Metastability of Markovian systems

[1]  R. Nussbaum The radius of the essential spectrum , 1970 .

[2]  K. Lange Decompositions of substochastic transition functions , 1973 .

[3]  Peter Deuflhard,et al.  Adaptive hierarchical cluster analysis by Self-Organizing Box Maps , 2000 .

[4]  E. Davies,et al.  Metastable States of Symmetric Markov Semigroups II , 1982 .

[5]  V. Zhurkin,et al.  Modeling DNA deformations. , 2000, Current opinion in structural biology.

[6]  Felix E. Browder,et al.  On the spectral theory of elliptic differential operators. I , 1961 .

[7]  Peter Deuflhard,et al.  Automatic Identification of Metastable Conformations via Self-Organized Neural Networks , 2002 .

[8]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[9]  Martin Schechter,et al.  Semigroups of operators and measures of noncompactness , 1971 .

[10]  P. Deuflhard,et al.  Hierarchical Uncoupling-Coupling of Metastable Conformations , 2002 .

[11]  Albert H. Widmann,et al.  Monte Carlo algorithms for the atomistic simulation of condensed polymer phases , 1995 .

[12]  Wilhelm Huisinga,et al.  Self-Organizing Maps Combined with Eigenmode Analysis for Automated Cluster Identification , 1999 .

[13]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[14]  Robert Zwanzig,et al.  Problems in nonlinear transport theory , 1980 .

[15]  Peter Deuflhard,et al.  Transfer Operator Approach to Conformational Dynamics in Biomolecular Systems , 2001 .

[16]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[17]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[18]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[19]  Wilhelm Huisinga,et al.  On Conformational Dynamics induced by Langevin Processes , 2000 .

[20]  Martin Schechter,et al.  On the essential spectrum of an arbitrary operator. I , 1966 .

[21]  An Uncoupling-Coupling Technique for Markov Chain Monte Carlo Methods , 2000 .

[22]  Michael Dellnitz,et al.  Computation of Essential Molecular Dynamics by Subdivision Techniques , 1996, Computational Molecular Dynamics.

[23]  Wilhelm Huisinga,et al.  From simulation data to conformational ensembles: Structure and dynamics‐based methods , 1999 .

[24]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[25]  M. Krasnosel’skiǐ,et al.  Integral operators in spaces of summable functions , 1975 .

[26]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[27]  J. Reinhold Molekulardynamik — Grundlagen und Anwendungen , 1996 .

[28]  A. Bovier,et al.  Metastability in stochastic dynamics of disordered mean-field models , 1998, cond-mat/9811331.

[29]  L. Maligranda Weakly compact operators and interpolation , 1992 .

[30]  D. Vere-Jones Markov Chains , 1972, Nature.

[31]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[32]  E. Davies,et al.  Metastable States of Symmetric Markov Semigroups I , 1982 .

[33]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[34]  R. Tweedie,et al.  Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.

[35]  Tosio Kato Perturbation theory for linear operators , 1966 .

[36]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[37]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[38]  N. S. Barnett,et al.  Private communication , 1969 .

[39]  Approximation by Weakly Compact Operators in L1 , 1984 .

[40]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[41]  Tosio Kato,et al.  Perturbation theory for nullity, deficiency and other quantities of linear operators , 1958 .

[42]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[43]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[44]  J. Mccammon,et al.  Conformation gating as a mechanism for enzyme specificity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Hiroshi Kunita,et al.  A classification of the second order degenerate elliptic operators and its probabilistic characterization , 1974 .

[46]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[47]  Michael Dellnitz,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .

[48]  L. Weis On perturbations of Fredholm operators in _{}()-spaces , 1977 .

[49]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[50]  L. Weis Decompositions of Positive Operators and Some of their Applications , 1984 .

[51]  Hybrid Monte Carlo with adaptive temperature in mixed‐canonical ensemble: Efficient conformational analysis of RNA , 1998 .

[52]  Wilhelm Huisinga,et al.  From simulation data to conformational ensembles: Structure and dynamics‐based methods , 1999, J. Comput. Chem..

[53]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[54]  C. Schütte Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules , 1999 .

[55]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[56]  G. Singleton,et al.  ASYMPTOTICALLY EXACT ESTIMATES FOR METASTABLE MARKOV SEMIGROUPS , 1984 .

[57]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[58]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[59]  P. Deuflhard,et al.  A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo , 1999 .

[60]  Alexander Fischer,et al.  Hybrid Monte Carlo with adaptive temperature in mixed-canonical ensemble: Efficient conformational analysis of RNA , 1998, J. Comput. Chem..

[61]  P. Deuflhard,et al.  Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains , 2000 .

[62]  C. Schütte,et al.  Homogenization of Hamiltonian systems with a strong constraining potential , 1997 .

[63]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  K. Yosida,et al.  Operator-Theoretical Treatment of Markoff's Process and Mean Ergodic Theorem , 1941 .

[65]  E. Davies,et al.  One-parameter semigroups , 1980 .