Γ-Minimax: A Paradigm for Conservative Robust Bayesians

In this chapter a tutorial overview of Gamma minimaxity (Γ-minimaxity) is provided. One of the assumptions of the robust Bayesian analysis is that prior distributions can seldom be quantified or elicited exactly. Instead, a family of priors, Γ, reflecting prior beliefs is elicited. The Γ-minimax decision-theoretic approach to statistical inference favors an action/rule which incorporates information specified via Γ and guards against the least favorable prior in Γ. This paradigm falls between Bayesian and minimax paradigms; it coincides with the former when prior information can be summarized in a single prior and with the latter when no prior information is available (or equivalently, possible priors belong to the class of all distributions).

[1]  W. R. Buckland,et al.  Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. , 1952 .

[2]  D. Ellsberg Classic and Current Notions of “Measurable Utility” , 1954 .

[3]  Morris Skibinsky Extreme nth moments for distributions on [0, 1] and the inverse of a moment space map , 1968 .

[4]  PARTIAL PRIOR INFORMATION: SOME EMPIRICAL BAYES AND G-MINIMAX DECISION FUNCTIONS, , 1969 .

[5]  T. M. O'Donovan,et al.  g2-minimax estimators in the exponential family , 1970 .

[6]  B. Efron,et al.  Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case , 1971 .

[7]  S. R. Watson On Bayesian inference with incompletely specified prior distributions , 1974 .

[8]  R. Berger Gamma minimax robustness of bayes rules , 1979 .

[9]  Joseph B. Kadane,et al.  Robustness of Bayesian analyses , 1984 .

[10]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[11]  H. Robbins Asymptotically Subminimax Solutions of Compound Statistical Decision Problems , 1985 .

[12]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[13]  Γ-ΜΙΝΙΜΑΧ AND RESTRICTED-RISK BAYES ESTIMATION OF MULTIPLE POISSON MEANS UNDER ε-CONTAMINATIONS OF THE SUBJECTIVE PRIOR , 1988 .

[14]  Bayesian Estimation Subject to Minimaxity of the Mean of a Multivariate Normal Distribution in the Case of a Common Unknown Variance: A Case for Bayesian Robustness , 1988 .

[15]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  J. Berger,et al.  Ranges of posterior measures for priors with unimodal contaminations , 1989 .

[18]  A. DasGupta,et al.  FREQUENTIST BEHAVIOR OF ROBUST BAYES ESTIMATES OF NORMAL MEANS , 1989 .

[19]  David Ríos Insua,et al.  Sensitivity analysis in multi-objective decision making , 1990 .

[20]  J. Berger Robust Bayesian analysis : sensitivity to the prior , 1990 .

[21]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[22]  Ryszard Zieliński,et al.  Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma prior , 1991 .

[23]  F. Ruggeri,et al.  Conditional ¡-minimax actions under convex losses , 1992 .

[24]  Branislav D Vidakovic,et al.  A study of the properties of computationally simple rules in estimation problems , 1992 .

[25]  Minimax estimators for a bounded location parameter , 1992 .

[26]  A. Dasgupta,et al.  ESTIMATING A BINOMIAL PARAMETER: IS ROBUST BAYES REAL BAYES? , 1993 .

[27]  Stability and conditional Γ-minimaxity in Bayesian inference , 1993 .

[28]  Brani Vidakovic,et al.  Some Results on Posterior Regret ?-minimax Estima- Tion , 1993 .

[29]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[30]  Wolfgang Polasek,et al.  Robust Bayesian methods in simple ANOVA models , 1994 .

[31]  Insua David Ríos,et al.  Some Results On Posterior Regret Γ-Μινιμαχ Estimation , 1995 .

[32]  Agata Boratyńska,et al.  Stability of Bayesian inference in exponential families , 1997 .