Computational crack path prediction

Abstract A computer program has been developed for the numerical prediction of curved crack growth paths under proportional loading conditions. The numerical prediction is performed by the step-by-step method in cooperation with the stress analysis ahead of the crack tip and the determination of the curved increment of the crack growth. The stress analysis is performed by the method of superposition of analytical and finite-element solutions, and the results are then utilized to determine the coefficients of the analytical expression of the curved crack path obtained by the first order perturbation method. The first numerical example is given for the crack path prediction in DCB-type specimen, where we often observe abrupt crack curving. Computational prediction is performed by introducing slight and small initial branching at the original crack tip. Within few steps of numerical calculations unstable crack curving is obtained, and the predicted path shows extremely good agreement with the experimentally measured path. The second numerical prediction is made for an edge crack approaching a circular hole, which may be considered as a crack arrester. In the present case the effect of the initially introduced slight kink diminishes with increasing crack length. The crack turns back to the original direction, resulting arrest at the hole.