The TUM VI Benchmark for Evaluating Visual-Inertial Odometry

Visual odometry and SLAM methods have a large variety of applications in domains such as augmented reality or robotics. Complementing vision sensors with inertial measurements tremendously improves tracking accuracy and robustness, and thus has spawned large interest in the development of visual-inertial (VI) odometry approaches. In this paper, we propose the TUM VI benchmark, a novel dataset with a diverse set of sequences in different scenes for evaluating VI odometry. It provides camera images with 1024×1024 resolution at 20 Hz, high dynamic range and photometric calibration. An IMU measures accelerations and angular velocities on 3 axes at 200 Hz, while the cameras and IMU sensors are time-synchronized in hardware. For trajectory evaluation, we also provide accurate pose ground truth from a motion capture system at high frequency (120 Hz) at the start and end of the sequences which we accurately aligned with the camera and IMU measurements. The full dataset with raw and calibrated data is publicly available. We also evaluate state-of-the-art VI odometry approaches on our dataset.

[1]  Ryan M. Eustice,et al.  University of Michigan North Campus long-term vision and lidar dataset , 2016, Int. J. Robotics Res..

[2]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[3]  Jörg Stückler,et al.  Direct visual-inertial odometry with stereo cameras , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Daniel Cremers,et al.  A Photometrically Calibrated Benchmark For Monocular Visual Odometry , 2016, ArXiv.

[5]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[6]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[7]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Davide Scaramuzza,et al.  The Zurich urban micro aerial vehicle dataset , 2017, Int. J. Robotics Res..

[9]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[10]  Francisco Angel Moreno,et al.  The Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario , 2014, Int. J. Robotics Res..

[11]  Jörg Stückler,et al.  Visual-Inertial Mapping With Non-Linear Factor Recovery , 2019, IEEE Robotics and Automation Letters.

[12]  Roland Siegwart,et al.  Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback , 2017, Int. J. Robotics Res..

[13]  Kostas Daniilidis,et al.  PennCOSYVIO: A challenging Visual Inertial Odometry benchmark , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Stefano Soatto,et al.  Real-time 3D motion and structure of point features: a front-end system for vision-based control and interaction , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Roland Siegwart,et al.  Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Daniel Cremers,et al.  Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[19]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[21]  Standard SpeciÞcation Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros , 1998 .