A Generalization of the Archimedean Class of Bivariate Copulas

We introduce and study a class of bivariate copulas depending on two univariate functions which generalizes the well-known Archimedean family. We provide several examples and some results about the concordance order.

[1]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[2]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[3]  R. Mesiar,et al.  On a family of copulas constructed from the diagonal section , 2006, Soft Comput..

[4]  H. Joe Multivariate models and dependence concepts , 1998 .

[5]  Manuel Úbeda-Flores,et al.  A new class of bivariate copulas , 2004 .

[6]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[7]  St'ephane Girard,et al.  Symmetry and dependence properties within a semiparametric family of bivariate copulas , 2002, 1103.5953.

[8]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[9]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[10]  Fabrizio Durante,et al.  A new class of symmetric bivariate copulas , 2006 .

[11]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[12]  Elisa M. Molanes,et al.  Copulas in finance and insurance , 2008 .

[13]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[14]  Bernard De Baets,et al.  On Some New Forms of Cycle-Transitivity and Their Relation to Commutative Copulas , 2005, EUSFLAT Conf..

[15]  Harvey E. Lapan,et al.  The Use of Archimedean Copulas to Model Portfolio Allocations , 2002 .

[16]  R. Nelsen An Introduction to Copulas , 1998 .

[17]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[18]  Gianni Dal Maso Ennio De Giorgi , 2007 .

[19]  Marco Scarsini,et al.  Archimedean copulae and positive dependence , 2005 .

[20]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[21]  Abe Sklar,et al.  Random variables, joint distribution functions, and copulas , 1973, Kybernetika.

[22]  J.-L. Dortet-Bernadet,et al.  Dependence for Archimedean copulas and aging properties of their generating functions , 2004 .

[23]  Carles M. Cuadras,et al.  A continuous general multivariate distribution and its properties , 1981 .

[24]  A characterization of lancaster probabilities with margins in a multivariate additive class , 2004 .

[25]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .