Koopman Theory for Partial Differential Equations

We consider the application of Koopman theory to nonlinear partial differential equations. We demonstrate that the observables chosen for constructing the Koopman operator are critical for enabling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues and Koopman modes. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on two canonical, nonlinear PDEs: Burgers' equation and the nonlinear Schrodinger equation. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables.

[1]  Benjamin Peherstorfer,et al.  Detecting and Adapting to Parameter Changes for Reduced Models of Dynamic Data-driven Application Systems , 2015, ICCS.

[2]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[3]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[4]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Steven L. Brunton,et al.  Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems , 2013, SIAM J. Appl. Dyn. Syst..

[6]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[7]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[8]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[9]  Frank Noé,et al.  A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems , 2012, Multiscale Model. Simul..

[10]  Frank Noé,et al.  Variational Approach to Molecular Kinetics. , 2014, Journal of chemical theory and computation.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[13]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[14]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[15]  Willi-Hans Steeb,et al.  Non-linear autonomous systems of differential equations and Carleman linearization procedure , 1980 .

[16]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[17]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Charbel Farhat,et al.  Real-time solution of computational problems using databases of parametric linear reduced-order models with arbitrary underlying meshes , 2015 .

[20]  Clarence W. Rowley,et al.  A Kernel Approach to Data-Driven Koopman Spectral Analysis , 2014 .

[21]  Steven L. Brunton,et al.  Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Stephen P. Banks,et al.  Infinite-dimensional Carleman linearization, the Lie series and optimal control of non-linear partial differential equations , 1992 .

[23]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[24]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[25]  Benjamin Peherstorfer,et al.  Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates , 2015, SIAM J. Sci. Comput..

[26]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[27]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[28]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[29]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[30]  J. Nathan Kutz,et al.  Mode-Locked Soliton Lasers , 2006, SIAM Rev..

[31]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[32]  Petros Boufounos,et al.  Sparse Sensing and DMD-Based Identification of Flow Regimes and Bifurcations in Complex Flows , 2015, SIAM J. Appl. Dyn. Syst..

[33]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[34]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[35]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[36]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[37]  Hao Wu,et al.  Data-Driven Model Reduction and Transfer Operator Approximation , 2017, J. Nonlinear Sci..

[38]  G. Baudat,et al.  Kernel-based methods and function approximation , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[39]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[41]  A. Majda Challenges in Climate Science and Contemporary Applied Mathematics , 2012 .

[42]  Benjamin Peherstorfer,et al.  Dynamic data-driven reduced-order models , 2015 .

[43]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[44]  Toni Giorgino,et al.  Identification of slow molecular order parameters for Markov model construction. , 2013, The Journal of chemical physics.