Titanium alloyed with rhenium by selective laser melting

[1]  Takayoshi Nakano Selective Laser Melting , 2020, Multi-dimensional Additive Manufacturing.

[2]  Mariana Calin,et al.  Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties , 2014 .

[3]  J.-P. Kruth,et al.  Microstructure and mechanical properties of a novel β titanium metallic composite by Selective Laser Melting , 2014 .

[4]  Mariana Calin,et al.  Manufacture by selective laser melting and mechanical behavior of commercially pure titanium , 2014 .

[5]  I. Yadroitsava,et al.  Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution , 2014 .

[6]  H. Maier,et al.  On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance , 2013 .

[7]  J. Kruth,et al.  Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties , 2012 .

[8]  D. Gupta,et al.  Laser-assisted synthesis of Ti–Mo alloys for biomedical applications , 2012 .

[9]  R. Poprawe,et al.  Laser additive manufacturing of metallic components: materials, processes and mechanisms , 2012 .

[10]  Reinhart Poprawe,et al.  Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium , 2012 .

[11]  Yulin Hao,et al.  Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy , 2011 .

[12]  E. Chlebus,et al.  Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting , 2011 .

[13]  Stuart A. Maloy,et al.  Models of liquid metal corrosion , 2010 .

[14]  Camden R. Hubbard,et al.  Residual Stress Measurement of Laser-Engineered Net Shaping AISI 410 Thin Plates Using Neutron Diffraction , 2008 .

[15]  Horst Meier,et al.  Experimental studies on selective laser melting of metallic parts , 2008 .

[16]  A. Dobromyslov,et al.  The orthorhombic α″-phase in binary titanium-base alloys with d-metals of V–VIII groups , 2006 .

[17]  J. Kruth,et al.  Residual stresses in selective laser sintering and selective laser melting , 2006 .

[18]  J. Kruth,et al.  Selective laser melting of biocompatible metals for rapid manufacturing of medical parts , 2006 .

[19]  C. Ju,et al.  Comparison among Mechanical Properties of Investment-Cast c.p. Ti, Ti-6Al-7Nb and Ti-15Mo-1Bi Alloys , 2004 .

[20]  C. Poole,et al.  Encyclopedic Dictionary of Condensed Matter Physics , 2004 .

[21]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[22]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[23]  A. Dobromyslov,et al.  Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods , 2001 .

[24]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[25]  Kenneth G. Budinski,et al.  Tribological properties of titanium alloys , 1991 .

[26]  J. Murray The Re−Ti (Rhenium-Titanium) system , 1982 .

[27]  W. D. Manly Fundamentals of Liquid Metal Corrosion , 1956 .

[28]  M. Ashby,et al.  Phase Diagrams 2 , 2013 .

[29]  Raymond F. Wegman,et al.  Titanium and Titanium Alloys , 2013 .

[30]  R. Adams Microstructural and Mechanical Property Characterization of Laser Additive Manufactured (LAM) Rhenium , 2012 .

[31]  Joseph R. Davis Properties and selection : nonferrous alloys and special-purpose materials , 1990 .