A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions

We propose a hierarchical approach to 3D scattered data interpolation with compactly supported basis functions. Our numerical experiments suggest that the approach integrates the best aspects of scattered data fitting with locally and globally supported basis functions. Employing locally supported functions leads to an efficient computational procedure, while a coarse-to-fine hierarchy makes our method insensitive to the density of scattered data and allows us to restore large parts of missed data. Given a point cloud distributed along a surface, we first use spatial down sampling to construct a coarse-to-fine hierarchy of point sets. Then we interpolate the sets starting from the coarsest level. We interpolate a point set of the hierarchy, as an offsetting of the interpolating function computed at the previous level. An original point set and its coarse-to-fine hierarchy of interpolated sets is presented. According to our numerical experiments, the method is essentially faster than the state-of-the-art scattered data approximation with globally supported RBFs (Carr et al., 2001) and much simpler to implement.

[1]  Yutaka Ohtake,et al.  Adaptive smoothing tangential direction fields on polygonal surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[2]  A. Ricci,et al.  A Constructive Geometry for Computer Graphics , 1973, Computer/law journal.

[3]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[4]  Ichiro Hagiwara,et al.  Software tools using CSRBFs for processing scattered data , 2003, Comput. Graph..

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[7]  Yutaka Ohtake,et al.  An Image Processing Approach to Detection of Ridges and Ravines on Polygonal Surfaces , 2000, Eurographics.

[8]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[9]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[10]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[11]  James F. Blinn,et al.  A generalization of algebraic surface drawing , 1982, SIGGRAPH.

[12]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[13]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[14]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[15]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[16]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[17]  Norma Banas,et al.  Visualization , 1968, Machine-mediated learning.

[18]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[19]  Greg Turk,et al.  Creating Smooth Implicit Surfaces from Polygonal Meshes , 1999 .

[20]  Greg Turk,et al.  Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[22]  G. Turk,et al.  Reconstructing Surfaces by Volumetric Regularization , 2000 .

[23]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[24]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[25]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[26]  Marc Alexa,et al.  Progressive point set surfaces , 2003, TOGS.

[27]  Yutaka Ohtake,et al.  Dual/Primal mesh optimization for polygonized implicit surfaces , 2002, SMA '02.

[28]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[29]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[30]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[31]  Greg Turk,et al.  Reconstructing surfaces using anisotropic basis functions , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[32]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[33]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[34]  Kouki Watanabe,et al.  Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.

[35]  David S. Ebert,et al.  Texturing and Modeling , 1998 .

[36]  Armin Iske,et al.  Multilevel scattered data approximation by adaptive domain decomposition , 2005, Numerical Algorithms.

[37]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[38]  Pietro Perona,et al.  3D photography on your desk , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[39]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[40]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[41]  Daniel Thalmann,et al.  Unified approach to reconstruction and modification of motion and image data , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[42]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[43]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..