ENTROPY AND LORENTZ TRANSFORMATIONS

Abstract As the entropy is a measure of our ignorance, the lack of our knowledge of time-like variables in relativistic quantum mechanics can be translated into an entropy. Within the framework of the covariant harmonic oscillator formalism for relativistic extended hadrons, the entropy can be calculated in terms of the hadronic velocity. The entropy in this case is not derived from thermodynamics or statistical mechanics, but purely from the incompleteness of information.

[1]  Kim Observable gauge transformations in the parton picture. , 1989, Physical review letters.

[2]  H. Umezawa,et al.  Temperature in a pure state , 1989 .

[3]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[4]  H. Matsumoto,et al.  Thermo Field Dynamics and Condensed States , 1982 .

[5]  Marilyn E. Noz,et al.  Theory and Applications of the Poincaré Group , 1986 .

[6]  Richard Phillips Feynman,et al.  Current matrix elements from a relativistic quark model , 1971 .

[7]  A. Mann,et al.  Thermal coherent states , 1989 .

[8]  Young S. Kim,et al.  Lorentz-squeezed hadrons and hadronic temperature , 1990 .

[9]  Young S. Kim,et al.  Squeezed states and thermally excited states in the wigner phase-space picture of quantum mechanics , 1989 .

[10]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. L. Knight,et al.  Correlations and squeezing of two‐mode oscillations , 1989 .

[12]  Eugene P. Wigner,et al.  80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .

[13]  J. D. Bjorken,et al.  Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon , 1969 .

[14]  H. Umezawa,et al.  Relation between quantum and thermal fluctuations , 1989 .

[15]  Hideki Yukawa,et al.  Structure and Mass Spectrum of Elementary Particles. II. Oscillator Model , 1953 .

[16]  Young S. Kim,et al.  Covariant Phase-Space Representation for Harmonic Oscillators , 1988 .

[17]  Richard Phillips Feynman,et al.  The Behavior of Hadron Collisions at Extreme Energies , 1969 .

[18]  V. L. Ginzburg,et al.  RELATIVISTIC OSCILLATOR MODELS OF ELEMENTARY PARTICLES , 1965 .

[19]  U. Fano Description of States in Quantum Mechanics by Density Matrix and Operator Techniques , 1957 .

[20]  T. Takabayasi Oscillator model for particles underlying unitary symmetry , 1964 .