Fracture resistance of graphene origami under nanoindentation

[1]  Junliang Yang,et al.  Failure mechanism of graphene kirigami under nanoindentation , 2022, Nanotechnology.

[2]  Jie Yang,et al.  Graphene Origami-Enabled Auxetic Metallic Metamaterials: An Atomistic Insight , 2021, International Journal of Mechanical Sciences.

[3]  Y. Mei,et al.  Shaping and structuring 2D materials via kirigami and origami , 2021, Materials Science and Engineering: R: Reports.

[4]  Q. Fu,et al.  Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework , 2021 .

[5]  Duc Tam Ho,et al.  Graphene origami structures with superflexibility and highly tunable auxeticity , 2020, Physical Review B.

[6]  Jie Yang,et al.  Improving interfacial shear strength between graphene sheets by strain-induced wrinkles , 2020 .

[7]  Y. Mai,et al.  Crease-induced targeted cutting and folding of graphene origami , 2020 .

[8]  S. Oyadiji,et al.  The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: A review , 2020, Materials Today Physics.

[9]  Harold S. Park,et al.  Graphene Origami with Highly Tunable Coefficient of Thermal Expansion , 2020, ACS nano.

[10]  K. Liao,et al.  Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications , 2019, Matter.

[11]  Nianjun Yang,et al.  Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. , 2019, Small.

[12]  Huajian Gao,et al.  Mechanical properties characterization of two-dimensional materials via nanoindentation experiments , 2019, Progress in Materials Science.

[13]  J. D. De Hosson,et al.  Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries , 2019, Carbon.

[14]  Marc Z. Miskin,et al.  Graphene-based bimorphs for micron-sized, autonomous origami machines , 2018, Proceedings of the National Academy of Sciences.

[15]  Amir A. Zadpoor,et al.  From flat sheets to curved geometries: Origami and kirigami approaches , 2017 .

[16]  M. Belmonte,et al.  From bulk to cellular structures: A review on ceramic/graphene filler composites , 2017 .

[17]  T. Gengenbach,et al.  Extremely Low Density and Super‐Compressible Graphene Cellular Materials , 2017, Advanced materials.

[18]  Z. Sha,et al.  Failure Mechanism of Phosphorene by Nanoindentation , 2017 .

[19]  S. Du,et al.  Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity , 2016 .

[20]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[21]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[22]  A. Politano,et al.  Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study , 2015, Nano Research.

[23]  David K. Campbell,et al.  Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami , 2014 .

[24]  E. Thomas,et al.  Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration , 2014, Science.

[25]  A. Krivtsov,et al.  Bending stiffness of a graphene sheet , 2014 .

[26]  Vladimir V. Tsukruk,et al.  Graphene-polymer nanocomposites for structural and functional applications , 2014 .

[27]  Ting Zhu,et al.  Fracture toughness of graphene , 2014, Nature Communications.

[28]  Shuze Zhu,et al.  Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. , 2014, ACS nano.

[29]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[30]  Xinming Li,et al.  Large‐Area Flexible Core–Shell Graphene/Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes , 2013 .

[31]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[32]  Nicholas Petrone,et al.  High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries , 2013, Science.

[33]  J. Kysar,et al.  Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes , 2012 .

[34]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[35]  Yuan Cheng,et al.  Mechanical properties of bilayer graphene sheets coupled by sp3 bonding , 2011 .

[36]  F. M. Peeters,et al.  NANOINDENTATION OF A CIRCULAR SHEET OF BILAYER GRAPHENE , 2010, 1105.2514.

[37]  D. Gracias,et al.  Microassembly based on hands free origami with bidirectional curvature. , 2009, Applied physics letters.

[38]  N. Aluru,et al.  Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. , 2009, Nano letters.

[39]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[40]  A. Nakano,et al.  A molecular dynamics study of nanoindentation of amorphous silicon carbide , 2007 .

[41]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[42]  T. Mackin,et al.  Spherical indentation of freestanding circular thin films in the membrane regime , 2004 .

[43]  K. Gall,et al.  Atomistic simulation of the structure and elastic properties of gold nanowires , 2004 .

[44]  Kimmo Kaski,et al.  Improved mechanical load transfer between shells of multiwalled carbon nanotubes , 2004 .

[45]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[46]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[47]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[48]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[49]  Jun Chen,et al.  Graphene-based materials for flexible energy storage devices , 2018 .

[50]  Tony F. Heinz,et al.  Ultraflat graphene , 2009, Nature.