Background and Foreground Modeling Using an Online EM Algorithm
暂无分享,去创建一个
Finn Lindgren | Johan Lindström | Jan Holst | Ulla Holst | Karl Johan Åström | Kalle Åström | U. Holst | J. Holst | F. Lindgren | J. Lindström
[1] P. Wayne Power,et al. Understanding Background Mixture Models for Foreground Segmentation , 2002 .
[2] D. Cox,et al. An Analysis of Transformations , 1964 .
[3] Jan-Olof Eklundh,et al. Statistical background subtraction for a mobile observer , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[4] P. KaewTrakulPong,et al. An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .
[5] Alex Pentland,et al. Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[6] E. S. Page. CONTINUOUS INSPECTION SCHEMES , 1954 .
[7] S. Sahu,et al. A fast distance‐based approach for determining the number of components in mixtures , 2003 .
[8] W. Eric L. Grimson,et al. Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).
[9] Derek R. Magee,et al. Tracking multiple vehicles using foreground, background and motion models , 2004, Image Vis. Comput..
[10] K. P. Karmann,et al. Moving object recognition using an adaptive background memory , 1990 .
[11] Alex Pentland,et al. Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.
[12] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[13] J. Tukey. On the Comparative Anatomy of Transformations , 1957 .
[14] Kentaro Toyama,et al. Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[15] Michael Harville,et al. Foreground segmentation using adaptive mixture models in color and depth , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.
[16] Michael Isard,et al. BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[17] Azriel Rosenfeld,et al. Detection and location of people in video images using adaptive fusion of color and edge information , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[18] Fatih Murat Porikli,et al. A Bayesian Approach to Background Modeling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.
[19] Volker Tresp,et al. Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates , 1998, IEEE Trans. Neural Networks.