On the role of subharmonic perturbations in the far wake

Etude numerique de la possibilite d'une excitation de perturbations sous-harmoniques individuelles dans chaque couche de cisaillement formant le sillage lointain. On considere l'existence de deux modes sous-harmoniques equivalents qui par des routes opposees peuvent conduire a un doublement de la longueur d'onde dans le sillage. Les simulations numeriques bidimensionnelles illustrent les developpements opposes de regions dominees par les deux differents modes et confirment la possibilite d'une structure de groupe resultante. La formation de paires de tourbillons joue un grand role dans la croissance de la structure du sillage lointain

[1]  F. Browand,et al.  Vortex pairing : the mechanism of turbulent mixing-layer growth at moderate Reynolds number , 1974, Journal of Fluid Mechanics.

[2]  A. Leonard Vortex methods for flow simulation , 1980 .

[3]  W. Koch,et al.  Local instability characteristics and frequency determination of self-excited wake flows , 1985 .

[4]  R. Breidenthal,et al.  Response of plane shear layers and wakes to strong three‐dimensional disturbances , 1980 .

[5]  G. M. Corcos,et al.  A numerical simulation of Kelvin-Helmholtz waves of finite amplitude , 1976, Journal of Fluid Mechanics.

[6]  Calculations of Interaction of Acoustic Waves with a Two- Dimensional Free Shear Layer , 1985 .

[7]  L. Sirovich The Karman vortex trail and flow behind a circular cylinder , 1985 .

[8]  J. J. Riley,et al.  Direct Numerical Simulation of a Perturbed, Turbulent Mixing Layer , 1980 .

[9]  A. Townsend,et al.  Flow patterns of large eddies in a wake and in a boundary layer , 1979, Journal of Fluid Mechanics.

[10]  P. Saffman,et al.  The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices , 1984, Journal of Fluid Mechanics.

[11]  Sadatoshi Taneda,et al.  Downstream Development of the Wakes behind Cylinders , 1959 .

[12]  G. M. Corcos,et al.  The mixing layer: deterministic models of a turbulent flow. Part 1. Introduction and the two-dimensional flow , 1984, Journal of Fluid Mechanics.

[13]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[14]  Eric D. Siggia,et al.  Evolution and breakdown of a vortex street in two dimensions , 1981, Journal of Fluid Mechanics.

[15]  A. Roshko Structure of Turbulent Shear Flows: A New Look , 1976 .