Modeling the Ageing Effect of Cycling Using a Supercapacitor-Module Under High Temperature With Electrochemical Impedance Spectroscopy Test

This paper contributes to the ageing studies of supercapacitor (SC) modules under different operational and environmental factors associated with SC ageing in electric vehicle/hybrid-electric vehicle (EV/HEV) applications, such as high temperature at 85°, constant charge, and variable load discharge cycling. The ageing behavior is quantified through the periodic monitoring of their electrical and electrochemical state of health with electrochemical impedance spectroscopy (EIS) characterization tests. The electrochemical results from EIS tests reveals detailed distinctions at different frequency region in relation to the ageing factor, which causes the deterioration in the SC electrical performance. Based on these distinctions, two electrical equivalent circuit models are developed to describe an initial model from a dormant cell, which transitioned to an ageing model as soon as an end-of-life criterion is observed. Experimental and simulation results are presented and compared.

[1]  Venkat Srinivasan,et al.  Mathematical Modeling of Electrochemical Capacitors , 1999 .

[2]  Vicente Feliu,et al.  Ultracapacitor-based storage: Modelling, power conversion and energy considerations , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[3]  M. Senda,et al.  Electrocapillarity and the Electric Double Layer Structure at Oil/Water Interfaces , 1987 .

[4]  Hamid Gualous,et al.  Experimental study of supercapacitor serial resistance and capacitance variations with temperature , 2003 .

[5]  E. Tironi,et al.  Supercapacitor characterization in power electronic applications: Proposal of a new model , 2009, 2009 International Conference on Clean Electrical Power.

[6]  J. J. Quintana,et al.  IDENTIFICATION OF THE FRACTIONAL IMPEDANCE OF ULTRACAPACITORS , 2006 .

[7]  H. Gualous,et al.  Self-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications , 2009, IEEE Transactions on Power Electronics.

[8]  Dino Isa,et al.  Comparing the degradation effect of a 'two-cell' Supercapacitor-module with and without voltage equalization circuit(s) under experimental self-discharge and load cycling tests , 2017, Microelectron. Reliab..

[9]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[10]  M. Péra,et al.  Review of characterization methods for supercapacitor modelling , 2014 .

[11]  Jean-Michel Vinassa,et al.  Thermal cycling impacts on supercapacitor performances during calendar ageing , 2013, Microelectron. Reliab..

[12]  S. Rael,et al.  A physical based model of power electric double-layer supercapacitors , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[13]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[14]  Amrane Oukaour,et al.  Supercapacitor ageing at constant temperature and constant voltage and thermal shock , 2010, Microelectron. Reliab..

[15]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[16]  Mark F. Mathias,et al.  Effect of counterion type on charge transport at redox polymer-modified electrodes , 1993 .

[17]  Jean-Michel Vinassa,et al.  How supercapacitors reach end of life criteria during calendar life and power cycling tests , 2011, Microelectron. Reliab..

[18]  O. Briat,et al.  Ultracapacitors modeling improvement using an experimental characterization based on step and frequency responses , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[19]  Dirk Uwe Sauer,et al.  Ageing behaviour of electrochemical double layer capacitors. Part I. Experimental study and ageing model , 2007 .

[20]  Dominik Sierociuk,et al.  Comparison and validation of integer and fractional order ultracapacitor models , 2011 .

[21]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[22]  M. Naim,et al.  Modelling the ageing behaviour of supercapacitors using electrochemical impedance spectroscopy for dynamic applications , 2015 .

[23]  Tsuyoshi Funaki,et al.  Evaluating Energy Storage Efficiency by Modeling the Voltage and Temperature Dependency in EDLC Electrical Characteristics , 2010, IEEE Transactions on Power Electronics.

[24]  N. Retiere,et al.  Half-order modelling of supercapacitors , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[25]  Hamid Gualous,et al.  Thermal modeling and heat management of supercapacitor modules for vehicle applications , 2009 .

[26]  Bingqing Wei,et al.  Effect of temperature on the capacitance of carbon nanotube supercapacitors. , 2009, ACS nano.

[27]  Jean-Michel Vinassa,et al.  Impact of high frequency current ripple on supercapacitors ageing through floating ageing tests , 2013, Microelectron. Reliab..

[28]  Shuai Ban,et al.  Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent , 2013 .

[29]  Jean-Michel Vinassa,et al.  Monitoring fading rate of ultracapacitors using online characterization during power cycling , 2007, Microelectron. Reliab..

[30]  Sunny E. Iyuke,et al.  RETRACTED: An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors , 2015 .

[31]  Lingling Du,et al.  Study on supercapacitor equivalent circuit model for power electronics applications , 2009, 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS).

[32]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[33]  Alexander Wokaun,et al.  Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages , 2010 .

[34]  Yang Wang,et al.  An ultracapacitor model derived using time-dependent current profiles , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[35]  Ying Zhang,et al.  Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications , 2011 .

[36]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[37]  M. Itagaki,et al.  Impedance analysis on electric double layer capacitor with transmission line model , 2007 .

[38]  Jean-Michel Vinassa,et al.  Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions , 2009, Microelectron. Reliab..

[39]  Jean-Michel Vinassa,et al.  Contribution of calendar ageing modes in the performances degradation of supercapacitors during power cycling , 2010, Microelectron. Reliab..

[40]  R. D. Levie NOTES ON GOUY DIFFUSE-LAYER THEORY , 1990 .

[41]  Jose J. Quintana,et al.  Modeling of Electrochemical Double Layer Capacitors by Means of Fractional Impedance , 2007 .

[42]  Jean-Michel Vinassa,et al.  Influence of thermal cycling on supercapacitor performance fading during ageing test at constant voltage , 2014, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[43]  Jean-Michel Vinassa,et al.  Power cycling tests for accelerated ageing of ultracapacitors , 2006, Microelectron. Reliab..

[44]  P. Skruch,et al.  Fractional-order models of the supercapacitors in the form of RC ladder networks , 2013 .

[45]  Amrane Oukaour,et al.  Calendar ageing and health diagnosis of supercapacitor , 2013 .

[46]  Hai Yang,et al.  Modeling and identification of electric double-layer supercapacitors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[47]  D Elena,et al.  MODELS AND MODELLING THE SUPERCAPACITORS FOR A DEFINED APPLICATION , 2011 .

[48]  V. Kazarinov,et al.  The Interface structure and electrochemical processes at the boundary between two immiscible liquids , 1987 .

[49]  T. S. Bhatti,et al.  A review on electrochemical double-layer capacitors , 2010 .

[50]  Luis Bernal Characterization of double-layer capacitors for power electronics applications , 1997 .

[51]  Rüdiger Kötz,et al.  Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests , 2010 .

[52]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[53]  Jean-Michel Vinassa,et al.  Characterization methods and modelling of ultracapacitors for use as peak power sources , 2007 .

[54]  Laurent Pilon,et al.  First-principles thermal modeling of electric double layer capacitors under constant-current cycling , 2014 .

[55]  R. Bonert,et al.  Characterization of double-layer capacitors (DLCs) for power electronics applications , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[56]  Jean-Michel Vinassa,et al.  Multilevel neural-network model for supercapacitor module in automotive applications , 2013, 4th International Conference on Power Engineering, Energy and Electrical Drives.

[57]  Jean-Michel Vinassa,et al.  Impact of Calendar Life and Cycling Ageing on Supercapacitor Performance , 2009, IEEE Transactions on Vehicular Technology.

[58]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[59]  Ralph E. White,et al.  A Mathematical Model of an Electrochemical Capacitor with Double‐Layer and Faradaic Processes , 1999 .

[60]  H. Gualous,et al.  Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications , 2009, IEEE Transactions on Industry Applications.

[61]  Roberto Faranda,et al.  A new parameters identification procedure for simplified double layer capacitor two-branch model , 2010 .

[62]  Nassim Rizoug,et al.  Modeling and Characterizing Supercapacitors Using an Online Method , 2010, IEEE Transactions on Industrial Electronics.

[63]  S. Fletcher,et al.  A universal equivalent circuit for carbon-based supercapacitors , 2014, Journal of Solid State Electrochemistry.

[64]  I. Mazin,et al.  Theory , 1934 .

[65]  J. J. Quintana,et al.  Modeling of Electrochemical Double Layer Capacitors by Means of Fractional Impedance , 2007 .

[66]  R. Martin,et al.  Modeling electrochemical double layer capacitor, from classical to fractional impedance , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[67]  Xue Ting Liu,et al.  An Improved Supercapacitor Model and its Parameter Identification for Wind Power Flow Optimization and Control System , 2010 .

[68]  Juan Bisquert,et al.  Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion , 1999 .