Proton transport through one-atom-thick crystals

[1]  A. Mehdizadeh,et al.  Supplementary References , 2022 .

[2]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[3]  A Gholinia,et al.  Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. , 2014, Nano letters.

[4]  G. Shi,et al.  Nanoporous graphene materials , 2014 .

[5]  Jing Kong,et al.  Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. , 2014, Nano letters.

[6]  Sokrates T. Pantelides,et al.  Graphene: An impermeable or selectively permeable membrane for atomic species? , 2014 .

[7]  P. Poesio,et al.  Mechanisms of molecular permeation through nanoporous graphene membranes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[8]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[9]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[10]  V. Berry Impermeability of graphene and its applications , 2013 .

[11]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[12]  Meng Miao,et al.  First principles study of the permeability of graphene to hydrogen atoms. , 2013, Physical chemistry chemical physics : PCCP.

[13]  A. Striolo,et al.  Simulation insights for graphene-based water desalination membranes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[14]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[15]  J. Kong,et al.  Selective molecular transport through intrinsic defects in a single layer of CVD graphene. , 2012, ACS nano.

[16]  S. Koenig,et al.  Selective molecular sieving through porous graphene. , 2012, Nature nanotechnology.

[17]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[18]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[19]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[20]  Chao Zhong,et al.  A polysaccharide bioprotonic field-effect transistor. , 2011, Nature communications.

[21]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[22]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[23]  E. Kaxiras,et al.  Graphene hydrate: theoretical prediction of a new insulating form of graphene , 2010 .

[24]  K. Novoselov,et al.  Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy , 2010, 1010.4888.

[25]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[26]  K. Novoselov,et al.  On resonant scatterers as a factor limiting carrier mobility in graphene. , 2010, Nano letters.

[27]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[28]  M. Fayer,et al.  Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. , 2009, The journal of physical chemistry. B.

[29]  G. Flynn,et al.  Observation of graphene bubbles and effective mass transport under graphene films. , 2009, Nano letters.

[30]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[31]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[32]  G. Flynn,et al.  Graphene oxidation: thickness-dependent etching and strong chemical doping. , 2008, Nano letters.

[33]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[34]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[35]  Y. Elabd,et al.  Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties , 2006 .

[36]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[37]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[39]  M. De Francesco,et al.  Solution-cast Nafion® ionomer membranes: preparation and characterization , 2004 .

[40]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[41]  Bernd Bauer,et al.  Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C) , 2001 .

[42]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[43]  P. Ekdunge,et al.  Proton Conductivity of Nafion 117 as Measured by a Four‐Electrode AC Impedance Method , 1996 .

[44]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[45]  D. Murphy,et al.  A New Route to Metal Hydrides. , 1993 .

[46]  R. Pethig,et al.  A proton-injecting technique for the measurement of hydration-dependent protonic conductivity , 1986 .

[47]  J. Hoare,et al.  Electrochemical Behavior of the Palladium‐Hydrogen System. I. Potential‐Determining Mechanisms , 1958 .