Boundary Handling and Adaptive Time-stepping for PCISPH

We present a novel boundary handling scheme for incompressible fluids based on Smoothed Particle Hydrodynamics (SPH). In combination with the predictive-corrective incompressible SPH (PCISPH) method, the boundary handling scheme allows for larger time steps compared to existing solutions. Furthermore, an adaptive time-stepping approach is proposed. The approach automatically estimates appropriate time steps independent of the scenario. Due to its adaptivity, the overall computation time of dynamic scenarios is significantly reduced compared to simulations with constant time steps.

[1]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[2]  Joe J. Monaghan,et al.  SPH particle boundary forces for arbitrary boundaries , 2009, Comput. Phys. Commun..

[3]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, Eurographics.

[4]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[5]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[6]  Richard Keiser,et al.  Multiresolution particle-based fluids , 2006 .

[7]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[8]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[9]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[10]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[11]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[12]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[13]  Markus H. Gross,et al.  Consistent penetration depth estimation for deformable collision response , 2004, VMV.

[14]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[15]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, SIGGRAPH Courses.

[16]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, SIGGRAPH 2007.

[18]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[19]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[20]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[21]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[22]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[23]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[24]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[25]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[26]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[27]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[28]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[29]  Yoshiaki Oka,et al.  A hybrid particle-mesh method for viscous, incompressible, multiphase flows , 2005 .

[30]  Ulrich Rüde,et al.  Detail-preserving fluid control , 2006, Symposium on Computer Animation.