On Hybrid Model Predictive Control of Sewer Networks

Real-time control (RTC) of sewer-network systems plays an important role in meeting increasingly restrictive environmental regulations to reduce release of untreated wastewater to the environment. This chapter presents the application of hybrid model predictive control (HMPC) on sewer systems. It is known from the literature that HMPC has a computational complexity growing exponentially with the size of the system to be controlled. However, the average solution time of modern mixed integer program (MIP) solvers is often much better than the predicted worst-case-solution time. The problem is to know when the worst-case computational complexity appears. In addition to presenting the application, a secondary aim of the chapter is to discuss the limits of applicability due to real-time constraints on computation time when HMPC is applied on large-scale systems such as sewer networks. By using a case study of a portion of the Barcelona sewer system, it is demonstrated how the computational complexity of HMPC appears for certain state and disturbance combinations.

[1]  K. T Smith,et al.  Nowcasting precipitation — a proposal for a way forward , 2000 .

[2]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[3]  Tobias Geyer,et al.  Low complexity model predictive control in power electronics and power systems , 2005 .

[4]  A.D. Ames,et al.  Characterization of Zeno behavior in hybrid systems using homological methods , 2005, Proceedings of the 2005, American Control Conference, 2005..

[5]  N. L. Ricker,et al.  Model-predictive control of a combined sewer system , 1994 .

[6]  Bart De Schutter,et al.  Optimal Control of a Class of Linear Hybrid Systems with Saturation , 1999, SIAM J. Control. Optim..

[7]  M. Schütze,et al.  MULTI-OBJECTIVE CONTROL OF URBAN WASTEWATER SYSTEMS , 2002 .

[8]  Vicenç Puig,et al.  Objective Prioritization Using Lexicographic Minimizers for MPC of Sewer Networks , 2008, IEEE Transactions on Control Systems Technology.

[9]  Raffaello D'Andrea,et al.  Phase Transitions in the Multi-Vehicle Task Assignment Problem , 2005 .

[10]  Alberto Bemporad,et al.  Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form , 2004, IEEE Transactions on Automatic Control.

[11]  David Butler,et al.  Modelling, Simulation and Control of Urban Wastewater Systems , 2002 .

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  Alberto Bemporad,et al.  Hybrid Systems: Computation and Control, 10th International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings , 2007, HSCC.

[14]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[15]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[16]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[17]  Martin Pleau,et al.  Global optimal real-time control of the Quebec urban drainage system , 2005, Environ. Model. Softw..

[18]  Alberto Bemporad,et al.  HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems , 2004, IEEE Transactions on Control Systems Technology.

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Manfred Morari,et al.  Efficient mode enumeration of compositional hybrid systems , 2003, Int. J. Control.

[21]  Martin Pleau,et al.  Minimizing Combined Sewer Overflows in Real-Time Control Applications , 1996 .

[22]  K. A. Tilford,et al.  Real-time urban drainage system modelling using weather radar rainfall data , 1999 .

[23]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[24]  M. Branicky,et al.  Solving hybrid control problems: level sets and behavioral programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[25]  J. Quevedo,et al.  Fault Tolerant Model Predictive Control applied on the Barcelona Sewer Network , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[26]  W. Rauch,et al.  Real time control of wastewater systems , 1996 .

[27]  Alberto Bemporad,et al.  Stability of hybrid model predictive control , 2004 .

[28]  A. Rantzer,et al.  Optimizing linear system switching , 2001 .

[29]  Alberto Bemporad,et al.  Suboptimal model predictive control of hybrid systems based on mode-switching constraints , 2007, 2007 46th IEEE Conference on Decision and Control.

[30]  Feng Lin,et al.  Analysis of Zeno behaviors in hybrid systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[31]  Magdalene Marinaki,et al.  Optimal Real-time Control of Sewer Networks , 2005 .

[32]  Alberto Bemporad,et al.  Hybrid Toolbox for MATLAB - User's Guide , 2003 .

[33]  Larry W. Mays Urban Stormwater Management Tools , 2003 .

[34]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[35]  Markos Papageorgiou,et al.  Nonlinear optimal flow control for sewer networks , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[36]  Michael Weyand Real-time control in combined sewer systems in Germany––some case studies , 2002 .

[37]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[38]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[39]  Yuri A. Ermolin,et al.  Mathematical modelling for optimized control of Moscow's sewer network , 1999 .

[40]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[41]  Gabriela Cembrano,et al.  Optimal control of urban drainage systems. A case study , 2004 .

[42]  Sophie Duchesne,et al.  Mathematical modeling of sewers under surcharge for real time control of combined sewer overflows , 2001 .

[43]  Alberto Bemporad,et al.  On the Optimal Control Law for Linear Discrete Time Hybrid Systems , 2002, HSCC.

[44]  Robert E. Bixby,et al.  MIP: Theory and Practice - Closing the Gap , 1999, System Modelling and Optimization.

[45]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[46]  Alberto Bemporad,et al.  Logic-based solution methods for optimal control of hybrid systems , 2006, IEEE Transactions on Automatic Control.

[47]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[48]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[49]  Peter A. Vanrolleghem,et al.  Real-time control of urban wastewater systems - Where do we stand today ? , 2002 .

[50]  Francesco Borrelli,et al.  Hybrid Decentralized Control of Large Scale Systems , 2005, HSCC.

[51]  Vijay P. Singh,et al.  Hydrologic Systems: Rainfall-Runoff Modeling , 1988 .