Spatial coherence of sunlight and its implications for light management in photovoltaics

New technologies are emerging that capture and redirect sunlight inside solar cells. This type of light management can significantly increase efficiency, but the device behavior will fundamentally depend on the spatial coherence of the incoming light. This dependence calls for a complete characterization of the spatial coherence of sunlight. Here, we present the first spectral measurements of the spatial degree of coherence of direct, diffuse, and simulated sunlight. An expression is derived for both the cross-spectral density and the spatial degree of coherence in an arbitrarily oriented device plane, including the effects of overcast skies. Implications of the present work are discussed and may lead to a better understanding of light-managing components in solar cells as well as a new class of solar simulator that provides both the same spectrum and spatial coherence as direct sunlight.

[1]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[2]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[3]  R. Schropp,et al.  Elongated nanostructures for radial junction solar cells , 2013, Reports on progress in physics. Physical Society.

[4]  Z. Ren,et al.  A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes , 2014 .

[5]  Tero Setälä,et al.  Spatial correlations and degree of polarization in homogeneous electromagnetic fields. , 2003, Optics letters.

[6]  Measuring coherence functions using non-parallel double slits. , 2014, Optics express.

[7]  Coherence Properties of Blackbody Radiation. III. Cross-Spectral Tensors , 1967 .

[8]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[9]  É. Verdet,et al.  Leçons d'optique physique , 2022 .

[10]  Olga Korotkova,et al.  Spectral degree of coherence of a random three-dimensional electromagnetic field , 2004 .

[11]  E. Wolf,et al.  Propagation of electromagnetic beams of any state of spatial coherence and polarization through multilayered stratified media. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[13]  E. Wolf Young's interference fringes with narrow-band light. , 1983, Optics letters.

[14]  A. R. Mackintosh,et al.  Rare Earth Magnetism: Structures and Excitations , 1991 .

[15]  R. Bourret Coherence properties of blackbody radiation , 1960 .

[16]  Daniel Feuermann,et al.  First direct measurement of the spatial coherence of sunlight. , 2012, Optics letters.

[17]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[18]  A. Polman,et al.  Dielectric back scattering patterns for light trapping in thin-film Si solar cells. , 2013, Optics express.

[19]  Elvira Fortunato,et al.  Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. , 2014, Optics express.

[20]  R. Biswas,et al.  Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells , 2014 .

[21]  E. Wolf Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[22]  Garret Moddel Will Rectenna Solar Cells Be Practical , 2013 .

[23]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[24]  A. Friberg,et al.  Partial polarization and electromagnetic spatial coherence of blackbody radiation emanating from an aperture , 2013 .

[25]  J. Gordon,et al.  Fundamental bounds for antenna harvesting of sunlight. , 2011, Optics letters.

[26]  E. Wolf,et al.  Spectral degree of coherence of a random three-dimensional electromagnetic field. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  E. Wolf,et al.  Relationships between the complex degrees of coherence in the space-time and in the space-frequency domains. , 1995, Optics letters.

[28]  Emil Wolf,et al.  Two-Beam Interference with Partially Coherent Light , 1957 .

[29]  H. Neckel,et al.  Solar limb darkening 1986–1990 (λλ303 to 1099 nm) , 1994 .

[30]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[31]  B. Hecht,et al.  Principles of Nano-Optics: Preface to the first edition , 2012 .

[32]  P. Meystre Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[33]  A. Friberg,et al.  Complete electromagnetic coherence in the space-frequency domain. , 2004, Optics letters.

[34]  Greg Gbur,et al.  Coherence properties of sunlight. , 2004, Optics letters.

[35]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[36]  Mark J. Beran,et al.  Theory of partial coherence , 1964 .

[37]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[38]  George Deodatis,et al.  Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .