Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma

A desire to interpret recent experiments on filamentation with and without beam‐smoothing techniques led to the development of a three‐dimensional fluid model that includes the effects of nonlocal electron transport and kinetic ion damping of the acoustic waves. The damping of the electron‐temperature perturbations that drive thermal filamentation by nonlocal electron conduction, valid in the diffusive limit, is supplemented in the present model by electron Landau damping in the collisionless limit when the wavelength of the perturbation is much less than the electron–ion scattering mean‐free path. In this collisionless limit, Landau damping of the ‘‘temperature’’ fluctuations makes ponderomotive forces universally more important than thermal forces. Simulations in plasmas of current interest illustrate the relative importance of thermal and ponderomotive forces for strongly modulated laser beams. Although thermal forces may initiate filamentation, the most intense filaments are associated with ponderomot...

[1]  A. Langdon,et al.  Laser filamentation in a thermally unstable plasma , 1987 .

[2]  A. Langdon,et al.  DYNAMICS OF PONDEROMOTIVE SELF-FOCUSING IN PLASMAS , 1991 .

[3]  Diana Anderson,et al.  Variational approach to nonlinear self‐focusing of Gaussian laser beams , 1977 .

[4]  D. S. Bailey,et al.  Two‐dimensional ray‐trace calculations of thermal whole beam self‐focusing , 1985 .

[5]  R. Craxton,et al.  Nonlinear laser–matter interaction processes in long‐scale‐length plasmas , 1992 .

[6]  B. Cohen,et al.  Stimulated scattering of light by ion modes in a homogeneous plasma: Space-time evolution , 1979 .

[7]  M. Rosenbluth,et al.  Parametric instabilities in the presence of space‐time random fluctuations , 1977 .

[8]  A. Bruce Langdon,et al.  Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions , 1980 .

[9]  S. P. Obenschain,et al.  Reduction of 3ω0/2 emission from laser‐produced plasmas with broad bandwidth, induced spatial incoherence at 0.53 μm , 1991 .

[10]  Epperlein Kinetic theory of laser filamentation in plasmas. , 1990, Physical review letters.

[11]  A. Schmitt Three‐dimensional filamentation of light in laser plasmas , 1991 .

[12]  P. Kaw,et al.  Filamentation and trapping of electromagnetic radiation in plasmas , 1973 .

[13]  G. L. Stradling,et al.  Laser irradiation of disk targets at 0.53 μm wavelength , 1983 .

[14]  C. Max Strong self‐focusing due to the ponderomotive force in plasmas , 1976 .

[15]  E. Epperlein Kinetic simulations of laser filamentation in plasmas , 1991 .

[16]  S. P. Obenschain,et al.  Use of induced spatial incoherence for uniform illumination on laser fusion targets. Memorandum report , 1983 .

[17]  O. Willi,et al.  Study of instabilities in long scale‐length plasmas with and without laser‐beam‐smoothing techniques , 1990 .

[18]  C. Labaune,et al.  Filamentation in long scale length plasmas: Experimental evidence and effects of laser spatial incoherence , 1992 .

[19]  J. L. Norton,et al.  Self-focusing and filamentation of laser light in high Z plasmas , 1988 .

[20]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[21]  Andrew J. Schmitt,et al.  The effects of optical smoothing techniques on filamentation in laser plasmas , 1988 .

[22]  Williams,et al.  Nonlocal electron heat transport by not quite Maxwell-Boltzmann distributions. , 1986, Physical review letters.

[23]  P. Young Experimental study of filamentation in laser–plasma interactions , 1991 .

[24]  R. Short,et al.  Filamentation of laser light in flowing plasmas , 1982 .

[25]  C. Capjack,et al.  Onset of laser light filamentation in preformed plasmas , 1989 .

[26]  R. D. Jones,et al.  ``Flicker'' in small scale laser-plasma self-focusing , 1988 .

[27]  H. Rose,et al.  Collective filamentation in induced spatial incoherence and multiple laser beam configurations , 1992 .

[28]  Ernest J. Valeo,et al.  Thermal Self-Focusing of Electromagnetic Waves in Plasmas , 1974 .

[29]  Michael D. Feit,et al.  Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams , 1988 .

[30]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[31]  Andrew J. Schmitt,et al.  Theory of induced spatial incoherence , 1987 .

[32]  O. Willi,et al.  Evidence of stimulated Raman scattering occurring in laser filaments in long‐scale‐length plasmas , 1992 .

[33]  Young,et al.  Direct evidence of ponderomotive filamentation in a laser-produced plasma. , 1988, Physical review letters.

[34]  Gizzi,et al.  Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma. , 1992, Physical review letters.

[35]  C. Randall Effect of ion collisionality on ion‐acoustic waves , 1982 .

[36]  Young,et al.  Filamentation and second-harmonic emission in laser-plasma interactions. , 1989, Physical review letters.

[37]  Rankin,et al.  Diffraction and the evolution of small scale filaments in a laser-produced plasma. , 1989, Physical review letters.

[38]  A. Kuckes EFFECT OF COLLISIONS UPON PLASMA ION OSCILLATIONS , 1964 .