Bidirectional Texture Function Simultaneous Autoregressive Model

The Bidirectional Texture Function (BTF) is the recent most advanced representation of visual properties of surface materials. It specifies their altering appearance due to varying illumination and viewing conditions. Corresponding huge BTF measurements require a mathematical representation allowing simultaneously extremal compression as well as high visual fidelity. We present a novel Markovian BTF model based on a set of underlying simultaneous autoregressive models (SAR). This complex but efficient BTF-SAR model combines several multispectral band limited spatial factors and range map sub-models to produce the required BTF texture space. The BTF-SAR model enables very high BTF space compression ratio, texture enlargement, and reconstruction of missing unmeasured parts of the BTF space.

[1]  Stefano Soatto,et al.  3-D Shape Estimation and Image Restoration - Exploiting Defocus and Motion Blur , 2006 .

[2]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[3]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[4]  Alireza Khotanzad,et al.  Multispectral Random Field Models for Synthesis and Analysis of Color Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[7]  Jeremy S. De Bonet,et al.  Multiresolution sampling procedure for analysis and synthesis of texture images , 1997, SIGGRAPH.

[8]  Michal Haindl,et al.  A Multiresolution Causal Colour Texture Model , 2000, SSPR/SPR.

[9]  Michal Haindl,et al.  Advanced textural representation of materials appearance , 2011, SA '11.

[10]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[11]  Michal Haindl,et al.  BTF rendering in blender , 2011, VRCAI.

[12]  Michal Haindl,et al.  A multiscale colour texture model , 2002, Object recognition supported by user interaction for service robots.

[13]  Ralf Sarlette,et al.  Acquisition, Synthesis, and Rendering of Bidirectional Texture Functions , 2005, Comput. Graph. Forum.

[14]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Mohamed S. Kamel,et al.  Image Analysis and Recognition , 2014, Lecture Notes in Computer Science.

[16]  Shree K. Nayar,et al.  Reflectance and Texture of Real-World Surfaces Authors , 1997, CVPR 1997.

[17]  Jirí Filip,et al.  A Fast Probabilistic Bidirectional Texture Function Model , 2004, ICIAR.

[18]  Stephen Lin,et al.  View-dependent displacement mapping , 2003, ACM Trans. Graph..

[19]  M. Haindl,et al.  Multiresolution Colour Texture Synthesis , 1998 .

[20]  Jirí Filip,et al.  BTF image space utmost compression and modelling method , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[21]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[22]  Jirí Filip,et al.  Bidirectional Texture Function Modeling: A State of the Art Survey , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Michal Haindl,et al.  A Roller - Fast Sampling-Based Texture Synthesis Algorithm , 2005, WSCG.