Increased polyubiquitination and proteasomal degradation of a Munc18-1 disease-linked mutant causes temperature-sensitive defect in exocytosis.

[1]  L. M. Stevers,et al.  Rapid Mapping of Interactions between Human SNX-BAR Proteins Measured In Vitro by AlphaScreen and Single-molecule Spectroscopy * , 2014, Molecular & Cellular Proteomics.

[2]  Astrid Magenau,et al.  Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae , 2014, eLife.

[3]  Sally Martin,et al.  Secretagogue Stimulation of Neurosecretory Cells Elicits Filopodial Extensions Uncovering New Functional Release Sites , 2013, The Journal of Neuroscience.

[4]  Mark E. Polinkovsky,et al.  A cell-free approach to accelerate the study of protein–protein interactions in vitro , 2013, Interface Focus.

[5]  Nancy T. Malintan,et al.  The Munc18-1 domain 3a loop is essential for neuroexocytosis but not for syntaxin-1A transport to the plasma membrane , 2013, Journal of Cell Science.

[6]  S. Sugita,et al.  Domain 3a of Munc18-1 plays a crucial role at the priming stage of exocytosis , 2013, Journal of Cell Science.

[7]  Nancy T. Malintan,et al.  Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin , 2013, The Journal of cell biology.

[8]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[9]  D. James,et al.  Low-resolution solution structures of Munc18:Syntaxin protein complexes indicate an open binding mode driven by the Syntaxin N-peptide , 2012, Proceedings of the National Academy of Sciences.

[10]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[11]  F. Scaglia,et al.  Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. , 2012, European journal of medical genetics.

[12]  C. Depienne,et al.  STXBP1‐related encephalopathy presenting as infantile spasms and generalized tremor in three patients , 2011, Epilepsia.

[13]  Kirill Alexandrov,et al.  Leishmania cell-free protein expression system. , 2011, Methods.

[14]  Ai Yamamoto,et al.  The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration , 2011, Neurobiology of Disease.

[15]  H. Arai,et al.  STXBP1 mutations in early infantile epileptic encephalopathy with suppression‐burst pattern , 2010, Epilepsia.

[16]  H. Ikeda,et al.  STXBP1 mutations cause not only Ohtahara syndrome but also West syndrome—Result of Japanese cohort study , 2010, Epilepsia.

[17]  Nancy T. Malintan,et al.  Munc18‐1 as a key regulator of neurosecretion , 2010, Journal of neurochemistry.

[18]  I. Scheffer,et al.  Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations , 2010, Neurology.

[19]  Andrew Escayg,et al.  Sodium channel SCN1A and epilepsy: Mutations and mechanisms , 2010, Epilepsia.

[20]  Helene Knævelsrud,et al.  Fighting disease by selective autophagy of aggregate‐prone proteins , 2010, FEBS letters.

[21]  Nancy T. Malintan,et al.  Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed syntaxin in PC12 cells. , 2009, Molecular Biology of the Cell.

[22]  Nancy T. Malintan,et al.  Abrogating Munc18-1-SNARE Complex Interaction Has Limited Impact on Exocytosis in PC12 Cells* , 2009, The Journal of Biological Chemistry.

[23]  T. Südhof,et al.  Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming , 2009, The Journal of cell biology.

[24]  J. Pridgeon,et al.  Proteomic analysis reveals Hrs ubiquitin‐interacting motif‐mediated ubiquitin signaling in multiple cellular processes , 2009, The FEBS journal.

[25]  J. Kaplan,et al.  UNC-18 promotes both the anterograde trafficking and synaptic function of syntaxin. , 2008, Molecular biology of the cell.

[26]  Naomichi Matsumoto,et al.  De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy , 2008, Nature Genetics.

[27]  Dirk Fasshauer,et al.  Munc18a controls SNARE assembly through its interaction with the syntaxin N‐peptide , 2008, The EMBO journal.

[28]  B. Davletov,et al.  Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. , 2007, Molecular biology of the cell.

[29]  M. Verhage,et al.  Munc18-1 in secretion: lonely Munc joins SNARE team and takes control , 2007, Trends in Neurosciences.

[30]  Yixian Zheng,et al.  Microtubule nucleation: γ-tubulin and beyond , 2006, Journal of Cell Science.

[31]  H. Paulson,et al.  Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. , 2003, Current opinion in genetics & development.

[32]  Thomas C. Südhof,et al.  Munc18-1 Promotes Large Dense-Core Vesicle Docking , 2001, Neuron.

[33]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[34]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[35]  S. Gottesman,et al.  Posttranslational quality control: folding, refolding, and degrading proteins. , 1999, Science.

[36]  J. Morris,et al.  Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease , 1999, Annals of neurology.

[37]  E. Mandelkow,et al.  Tau in Alzheimer's disease. , 1998, Trends in cell biology.

[38]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[39]  T. Reese Synaptic vesicle exocytosis. , 1981, JAMA.

[40]  N. Boddaert,et al.  Early epileptic encephalopathies associated with STXBP1 mutations: Could we better delineate the phenotype? , 2014, European journal of medical genetics.

[41]  Yixian Zheng,et al.  Microtubule nucleation: gamma-tubulin and beyond. , 2006, Journal of cell science.