EXAMINING SUBGRID MODELS OF SUPERMASSIVE BLACK HOLES IN COSMOLOGICAL SIMULATION

Although supermassive black holes (SMBHs) play an important role in galaxy and cluster evolution, at present they can only be included in large-scale cosmological simulation via subgrid techniques. However, these subgrid models have not been studied in a systematic fashion. Using a newly developed fast, parallel spherical overdensity halo finder built into the simulation code FLASH, we perform a suite of dark matter-only cosmological simulations to study the effects of subgrid model choice on relations between SMBH mass and dark matter halo mass and velocity dispersion. We examine three aspects of SMBH subgrid models: the choice of initial black hole seed mass, the test for merging two black holes, and the frequency of applying the subgrid model. We also examine the role that merging can play in determining the relations, ignoring the complicating effects of SMBH-driven accretion and feedback. We find that the choice of subgrid model can dramatically affect the black hole merger rate, the cosmic SMBH mass density, and the low-redshift relations to halo properties. We also find that it is possible to reproduce observations of the low-redshift relations without accretion and feedback, depending on the choice of subgrid model.

[1]  D. Croton A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift , 2009, 0901.4104.

[2]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[3]  Massive Black Hole Binary Evolution , 2004, astro-ph/0410364.

[4]  Massive black hole remnants of the first stars – I. Abundance in present‐day galactic haloes , 2003, astro-ph/0307171.

[5]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[6]  Supermassive black hole growth and merger rates from cosmological N-body simulations , 2007, astro-ph/0703540.

[7]  M. Colpi,et al.  Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion , 2006, astro-ph/0612505.

[8]  F. Shankar The demography of supermassive black holes: Growing monsters at the heart of galaxies , 2009, 0907.5213.

[9]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[10]  Martin J. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[11]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[12]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[13]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[14]  Impact of tangled magnetic fields on fossil radio bubbles , 2007, astro-ph/0703801.

[15]  T. Dobzhansky Evolution and environment. , 1960 .

[16]  P. Hopkins,et al.  Mergers, active galactic nuclei and ‘normal’ galaxies: contributions to the distribution of star formation rates and infrared luminosity functions , 2009, 0911.1131.

[17]  L. Ferrarese Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.

[18]  Stanford,et al.  Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas , 2007, Science.

[19]  M. Brüggen,et al.  Self-regulation of active galactic nuclei in galaxy clusters , 2009 .

[20]  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[21]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[22]  August E. Evrard,et al.  Mass estimates of X-ray clusters , 1996 .

[23]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[24]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[25]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[26]  THE NUMBER OF SUPERNOVAE FROM PRIMORDIAL STARS IN THE UNIVERSE , 2002, astro-ph/0411558.

[27]  M. Gu,et al.  The bulk kinetic power of radio jets in active galactic nuclei , 2009, 0903.1896.

[28]  T. Mahoney,et al.  The Central Kiloparsec of Starbursts and Active Galactic Nuclei: The La Palma Connection , 2001, astro-ph/0112011.

[29]  M. White The Mass Function , 2002, astro-ph/0207185.

[30]  Katrin Heitmann,et al.  THE STRUCTURE OF HALOS: IMPLICATIONS FOR GROUP AND CLUSTER COSMOLOGY , 2008, 0803.3624.

[31]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[32]  Katrin Heitmann,et al.  MASS FUNCTION PREDICTIONS BEYOND ΛCDM , 2010, 1005.2239.

[33]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[34]  T. Quinn,et al.  WANDERING BLACK HOLES IN BRIGHT DISK GALAXY HALOS , 2010, 1008.5147.

[35]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[36]  Alister W. Graham,et al.  The black hole mass – spheroid luminosity relation , 2007, 0705.0618.

[37]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[38]  AGN self-regulation in cooling flow clusters , 2006, astro-ph/0611914.

[39]  Supermassive black hole demography: the match between the local and accreted mass functions , 2004, astro-ph/0405585.

[40]  C. Reynolds,et al.  AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models , 2005, astro-ph/0511501.

[41]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[42]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[43]  S. McWilliams,et al.  Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.

[44]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[45]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[46]  G. B. Taylor,et al.  Cluster Magnetic Fields , 2002 .

[47]  D. Crampton,et al.  A RELATIONSHIP BETWEEN SUPERMASSIVE BLACK HOLE MASS AND THE TOTAL GRAVITATIONAL MASS OF THE HOST GALAXY , 2009, 0909.0269.

[48]  Xiaohui Fan,et al.  Evolution of high-redshift quasars , 2006 .

[49]  Hans-Peter Bischof,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN NON- AXISYMMETRIC GALAXIES , 2006 .

[50]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[51]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.