Channel estimation with noisy entanglement

We analyze the Pauli-channel estimation with mixed nonseparable states. It turns out that within a specific range entanglement can serve as a nonclassical resource. However, this range is rather small, that is entanglement is not very robust for this application. We further show that Werner states yield the best result of all Bell diagonal states with the same amount of entanglement.

[1]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[4]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[7]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[8]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[9]  Pérès,et al.  Collective tests for quantum nonlocality. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[10]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[11]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[12]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[13]  N. Gisin,et al.  Experimental Demonstration of Quantum Cryptography Using Polarized Photons in Optical Fibre over More than 1 km , 1993 .

[14]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[15]  Holger Mack,et al.  Enhanced estimation of a noisy quantum channel using entanglement , 2001 .

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[17]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[18]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[19]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[20]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .