A preliminary consideration of the electron impact ionization effect in cometary comas

Abstract From an analysis of the electron number densities and velocity distributions as observed at comet Giacobini-Zinner and comet Halley, it appears that in the so-called “transition region” of the coma electron impact ionization can exceed the nominal photoionization rate of H 2 O molecules but not by an order of magnitude. It is possible in localized regions where electron heating by ion acoustic waves and lower hybrid waves occurs, electron impact would become the dominant ionization (and dissociation) mechanism. The overall effect as limited by in-situ measurements of the neutral gas density distribution could be shown to be small, however.

[1]  C. T. Dum,et al.  Turbulent Heating and Quenching of the Ion Sound Instability , 1974 .

[2]  H. Alfvén The Origin of the Solar System , 1982 .

[3]  A. Lipatov,et al.  Plasma processes in cometary atmospheres , 1984 .

[4]  V. Formisano,et al.  The role of the critical ionization velocity phenomena in the production of inner coma cometary plasma , 1981 .

[5]  B. Tsurutani,et al.  International Cometary Explorer Encounter with Giacobini-Zinner: Magnetic Field Observations , 1986, Science.

[6]  K. Szego,et al.  First in situ plasma and neutral gas measurements at comet Halley , 1986 .

[7]  Motohiko Tanaka,et al.  Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability , 1985 .

[8]  W. Ip,et al.  Plasma Wave Observations at Comet Giacobini-Zinner , 1986, Science.

[9]  W. Huebner,et al.  Solar photo rate coefficients , 1979 .

[10]  S. Wyckoff,et al.  Molecular ions in comet tails , 1976 .

[11]  C. Wu,et al.  Statistical acceleration of electrons by lower-hybrid turbulence , 1981, Journal of Plasma Physics.

[12]  G. Haerendel Plasma Flow and Critical Velocity Ionization in Cometary Comae (GRL 13(3) 1986) , 1986 .

[13]  B. Tsurutani,et al.  Hydromagnetic Waves and Instabilities Associated with Cometary Ion Pickup: ICE Observations (GRL 13(3) 1986) , 1986 .

[14]  D. Baker,et al.  Three Component Plasma Electron Distribution in the Intermediate Ionized Coma of comet Giacobini-Zinner (GRL 13(4) 1986) , 1986 .

[15]  D. B. Beard A theory of Type-I comet tails , 1966 .

[16]  J. Kistemaker,et al.  Gross‐ and Partial‐Ionization Cross Sections for Electrons on Water Vapor in the Energy Range 0.1–20 keV , 1966 .

[17]  Michelle F. Thomsen,et al.  Ion and electron heating at collisionless shocks near the critical Mach number , 1985 .

[18]  Z. Zbyszynski,et al.  Extremely-low-frequency plasma waves in the environment of comet Halley , 1986 .

[19]  H. Rosenbauer,et al.  A Survey on Initial Results of the Helios Plasma Experiment , 1977 .

[20]  W. Ip,et al.  The generation of magnetic fields and electric currents in cometary plasma tails , 1976 .

[21]  J. Sauvaud,et al.  Comet Halley–solar wind interaction from electron measurements aboard Giotto , 1986 .

[22]  Michelle F. Thomsen,et al.  Electron velocity distributions near the Earth's bow shock , 1983 .

[23]  R. Davidson,et al.  Electromagnetic instabilities produced by neutral‐particle ionization in interplanetary space , 1972 .

[24]  J. Gosling,et al.  Large amplitude, low frequency plasma fluctuations at comet Giacobini-Zinner , 1986 .

[25]  V. Formisano,et al.  Observations of waves and plasma in the environment of comet Halley , 1986 .

[26]  W. Axford The interaction of the solar wind with comets. the interaction of the solar wind with comets. , 1964 .

[27]  R. Sagdeev,et al.  Mass loading and MHD turbulence in the solar wind/comet interaction region , 1986 .

[28]  R. Anderson,et al.  Comet Giacobini-Zinner: Plasma Description , 1986, Science.

[29]  W. Feldman,et al.  The Comet/Solar Wind Transition Region at Giacobini-Zinner (GRL 13(4) 1986) , 1986 .