Infrared and Raman spectroscopy in inorganic solids research
暂无分享,去创建一个
[1] H. Lutz,et al. Infrared study of νOD modes in isotopically dilute (HDO) kieserite-type compounds MXO4·H2O (M=Mn, Co, Ni, Zn, and X=S, Se) with matrix-isolated M′2+ and X′O42− guest ions , 1998 .
[2] H. D. Lutz,et al. IR‐ und Raman‐Spektren der isotypen Iodathydrate M(IO3)2 · 4 H2O (M = Mg, Ni, Co); Kristallstruktur von Co(IO3)2 · 4 H2O , 1998 .
[3] H. D. Lutz,et al. Zur Kenntnis von Strontiumhydroxidchlorid und Strontiumhydroxidbromid – Darstellung, Kristallstrukturen, IR‐ und Raman‐Spektren , 1998 .
[4] H. Lutz,et al. Crystal structure of brucite-type cobalt hydroxide β-Co{O(H,D)}2 — neutron diffraction, IR and Raman spectroscopy , 1998 .
[5] H. Lutz,et al. Water molecules and hydroxide ions in condensed materials; correlation of spectroscopic and structural data☆ , 1997 .
[6] H. Lutz,et al. Lattice vibration spectra. Part LXXXVI. Infrared and Raman spectra of baryte-type TlClO4, TlBF4, and NH4BF4 single crystals and of11B-enriched NH4BF4 , 1996 .
[7] Bernhard Schrader,et al. Infrared and Raman spectroscopy : methods and applications , 1995 .
[8] H. Lutz,et al. Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) — IR and Raman spectra, neutron diffraction of Fe(OH)2 , 1994 .
[9] H. Lutz,et al. Single‐crystal Raman studies on Sr(ClO3)2 and BrO3− and IO3− ions matrix isolated in Sr(ClO3)2 , 1990 .
[10] H. Lutz,et al. Polarized infrared reflection studies on MClO4 (M = NH4, K, Rb, and Cs) , 1990 .
[11] H. Lutz,et al. Intramolecular and intermolecular coupling of the water bands in β-MnSO3·3H2O type compounds☆ , 1990 .
[12] G. Zerbi,et al. A simple way to obtain information on charge distribution in molecules directly from infrared spectra: the case of CH bonds , 1989 .
[13] H.-P. Baldus,et al. Zur polymorphie des In2Se3 , 1988 .
[14] V. Petruševski,et al. Description of molecular distortions II. Intensities of the symmetric stretching bands of tetrahedral molecules , 1988 .
[15] W. Person,et al. Interpretation of infrared intensities. I. Mass-weighted squared effective charges. , 1988 .
[16] M. Ristova,et al. Water-anion vibrational coupling in some crystallohydrates , 1984 .
[17] H. Lutz,et al. Chalcides and pnictides of group VIII transition metals: Far-infrared spectroscopic studies on compounds MX2, MXY, and MY2 with pyrite, marcasite, and arsenopyrite structure , 1983 .
[18] W. Sterzel,et al. Intermolecular Vibrational Coupling A Model Calculation for the Out-of-Plane Vibration of CO3 −- in Compounds with the Aragonite Structure , 1982 .
[19] D. Rousseau,et al. Normal mode determination in crystals , 1981 .
[20] P. Grosse. Freie Elektronen in Festkörpern , 1979 .
[21] J. Lindgren,et al. O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates , 1978 .
[22] I. Nakagawa,et al. Far Infrared Reflection Spectra and Lattice Vibrations of CsNiCl3 Crystal , 1978 .
[23] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .
[24] A. Lane,et al. The single crystal polarized vibrational spectra of Cs3CoX5 (X = Cl and Br) and Raman spectra of other A3MX5 complexes , 1977 .
[25] S. Montero. The Transferability of Raman Tensors of Isolated Molecules to Crystals – Application to the Computation of Relative Intensities of the Internal Modes of SO4–– in K2SO4 Crystal , 1974 .
[26] R. Nyquist,et al. INFRARED SPECTRA OF INORGANIC COMPOUNDS , 1971 .