A discrete contact model for crowd motion

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the underlying mathematical framework, and we explain how recent results by J.F. Edmond and L. Thibault on the sweeping process by uniformly prox-regular sets can be adapted to handle this situation in terms of well-posedness. We propose a numerical scheme for this contact dynamics model, based on a prediction-correction algorithm. Numerical illustrations are finally presented and discussed.

[1]  J. MacGregor Smith,et al.  Modeling circulation systems in buildings using state dependent queueing models , 1989, Queueing Syst. Theory Appl..

[2]  Aline Lefebvre,et al.  Modélisation numérique d'écoulements fluide-particules : prise en compte des forces de lubrification , 2007 .

[3]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[4]  Gunnar G. Løvås,et al.  Modeling and Simulation of Pedestrian Traffic Flow , 1994 .

[5]  Edwin R. Galea,et al.  Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model , 2001 .

[6]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[7]  Aline Lefebvre,et al.  Modélisation numérique d'écoulements fluide/particules , 2007 .

[8]  Lionel Thibault,et al.  Relaxation of an optimal control problem involving a perturbed sweeping process , 2005, Math. Program..

[9]  Frédéric Bernicot,et al.  Existence of sweeping process in Banach spaces under directional prox-regularity , 2008, 0812.4673.

[10]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[11]  Serge P. Hoogendoorn,et al.  Gas-Kinetic Modeling and Simulation of Pedestrian Flows , 2000 .

[12]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .

[13]  Kai Nagel,et al.  From Particle Hopping Models to Traffic Flow Theory , 1998 .

[14]  John J Fruin,et al.  DESIGNING FOR PEDESTRIANS: A LEVEL-OF-SERVICE CONCEPT , 1971 .

[15]  Aline Lefebvre,et al.  Numerical simulation of gluey particles , 2008, 0802.2816.

[16]  H. Timmermans,et al.  A Model of Pedestrian Route Choice and Demand for Retail Facilities within Inner-City Shopping Areas , 2010 .

[17]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[18]  Juliette Venel,et al.  Modélisation mathématique et numérique de mouvements de foule , 2008 .

[19]  Roger L. Hughes,et al.  The flow of large crowds of pedestrians , 2000 .

[20]  Juliette Venel,et al.  Integrating Strategies in Numerical Modelling of Crowd Motion , 2010 .

[21]  Christian Dogbé On the numerical solutions of second order macroscopic models of pedestrian flows , 2008, Comput. Math. Appl..

[22]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[23]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .

[24]  Andreas Schadschneider,et al.  From ant trails to pedestrian dynamics , 2003 .

[25]  Bertrand Maury,et al.  Un Modèle de Mouvements de Foule , 2007 .

[26]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[27]  H. Timmermans,et al.  City centre entry points, store location patterns and pedestrian route choice behaviour : a microlevel simulation model , 1986 .

[28]  L. F. Henderson,et al.  The Statistics of Crowd Fluids , 1971, Nature.

[29]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[30]  Victor J. Blue,et al.  Cellular automata microsimulation for modeling bi-directional pedestrian walkways , 2001 .

[31]  Juliette Venel,et al.  Numerical scheme for a whole class of sweeping process , 2009, 0904.2694.

[32]  Bertrand Maury,et al.  Handling of Contacts in Crowd Motion Simulations , 2009 .

[33]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[34]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[36]  A. Schadschneider Cellular Automaton Approach to Pedestrian Dynamics - Theory , 2001, cond-mat/0112117.

[37]  Lionel Thibault,et al.  BV solutions of nonconvex sweeping process differential inclusion with perturbation , 2006 .

[38]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[39]  Lionel Thibault,et al.  On various notions of regularity of sets in nonsmooth analysis , 2002 .

[40]  Winnie Daamen,et al.  Modelling passenger flows in public transport facilities , 2004 .

[41]  Ron Kimmel,et al.  Fast Marching Methods for Computing Distance Maps and Shortest Paths , 1996 .

[42]  R. J. Wheeler,et al.  PEDESTRIAN FLOW CHARACTERISTICS , 1969 .

[43]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[44]  J. A. Delgado Blaschke's theorem for convex hypersurfaces , 1979 .

[45]  Giorgio C. Buttazzo,et al.  An Optimization Problem for Mass Transportation with Congested Dynamics , 2009, SIAM J. Control. Optim..

[46]  Serge P. Hoogendoorn,et al.  DYNAMIC USER-OPTIMAL ASSIGNMENT IN CONTINUOUS TIME AND SPACE , 2004 .