Space-time CFTs from the Riemann sphere
暂无分享,去创建一个
[1] Enno Keßler. Supermanifolds , 2019, Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional.
[2] J. Deschamps,et al. Loops , 2019, Complex Digital Circuits.
[3] M. Wilhelm,et al. On form factors and correlation functions in twistor space , 2016, Journal of High Energy Physics.
[4] Song He,et al. A note on connected formula for form factors , 2016, 1608.04306.
[5] A. Brandhuber,et al. The connected prescription for form factors in twistor space , 2016, 1608.03277.
[6] L. Mason,et al. Two-Loop Scattering Amplitudes from the Riemann Sphere , 2016, 1607.08887.
[7] Song He,et al. Connected formulas for amplitudes in standard model , 2016, 1607.02843.
[8] E. Sokatchev,et al. Composite operators and form factors in N=4 SYM , 2016, 1605.01386.
[9] H. Gomez. Λ scattering equations , 2016, 1604.05373.
[10] M. Wilhelm,et al. All tree-level MHV form factors in N$$ \mathcal{N} $$ = 4 SYM from twistor space , 2016, 1604.00012.
[11] M. Wilhelm,et al. Composite Operators in the Twistor Formulation of N=4 Supersymmetric Yang-Mills Theory. , 2016, Physical review letters.
[12] E. Sokatchev,et al. N$$ \mathcal{N} $$ = 4 super-Yang-Mills in LHC superspace part II: non-chiral correlation functions of the stress-tensor multiplet , 2016, 1601.06804.
[13] M. Wilhelm,et al. All tree-level MHV form factors in N$$ \mathcal{N} $$ = 4 SYM from twistor space , 2016, 1604.00012.
[14] L. Mason,et al. One-loop amplitudes on the Riemann sphere , 2015, 1511.06315.
[15] L. Mason,et al. Loop Integrands for Scattering Amplitudes from the Riemann Sphere. , 2015, Physical review letters.
[16] L. Mason,et al. Correlation functions of the chiral stress-tensor multiplet in N=4$$ \mathcal{N}=4 $$ SYM , 2015 .
[17] L. Mason,et al. New ambitwistor string theories , 2015, 1506.08771.
[18] K. Ohmori. Worldsheet geometries of ambitwistor string , 2015, 1504.02675.
[19] Yu-tin Huang,et al. Scattering Amplitudes in Gauge Theory and Gravity , 2015 .
[20] T. Adamo,et al. Scattering equations, supergravity integrands, and pure spinors , 2015, 1502.06826.
[21] L. Mason,et al. Correlation functions of the chiral stress-tensor multiplet in N=4 SYM , 2014, 1412.8718.
[22] Song He,et al. Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM , 2014, 1412.3479.
[23] David Skinner,et al. A worldsheet theory for supergravity , 2014, Journal of High Energy Physics.
[24] L. Mason,et al. Ambitwistor strings in four dimensions. , 2014, Physical review letters.
[25] David Skinner,et al. Ambitwistor strings and the scattering equations at one loop , 2013, Journal of High Energy Physics.
[26] P. Goddard,et al. Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension , 2013, 1311.5200.
[27] Song He,et al. Scattering of massless particles in arbitrary dimensions. , 2013, Physical review letters.
[28] Song He,et al. Scattering equations and Kawai-Lewellen-Tye orthogonality , 2013, 1306.6575.
[29] D. Simmons-Duffin. Projectors, shadows, and conformal blocks , 2012, 1204.3894.
[30] L. Mason,et al. Ambitwistor strings and the scattering equations , 2013, 1311.2564.
[31] M. Paulos. Loops, polytopes and splines , 2012, 1210.0578.
[32] S. Weinberg. Six-dimensional Methods for Four-dimensional Conformal Field Theories II: Irreducible Fields , 2012, 1209.4659.
[33] W. Siegel. Embedding vs. 6D twistors , 2012, 1204.5679.
[34] M. Son,et al. Superembedding methods for 4D N = 1 SCFTs , 2011, 1112.0325.
[35] W. Siegel. Embedding versus 6D twistors , 2012 .
[36] T. Adamo. Correlation functions, null polygonal Wilson loops, and local operators , 2011, 1110.3925.
[37] L. Mason,et al. A proof of the correlation function/supersymmetric Wilson loop correspondence , 2011 .
[38] S. Rychkov,et al. Spinning conformal correlators , 2011, 1107.3554.
[39] M. Paulos. Towards Feynman rules for Mellin amplitudes in AdS/CFT , 2011, 1107.1504.
[40] L. Mason,et al. A Proof of the Supersymmetric Correlation Function / Wilson Loop Correspondence , 2011, 1103.4119.
[41] J. Penedones. Writing CFT correlation functions as AdS scattering amplitudes , 2010, 1011.1485.
[42] S. Weinberg. Six-dimensional Methods for Four-dimensional Conformal Field Theories , 2010, 1006.3480.
[43] J. Fourier. Théorie analytique de la chaleur , 2009 .
[44] P. Millington,et al. Correlation Functions , 2019, Graduate Texts in Physics.
[45] N. Nekrasov. Lectures on curved beta-gamma systems, pure spinors, and anomalies , 2005, hep-th/0511008.
[46] W. Edward. Parity Invariance For String In Twistor Space , 2004 .
[47] E. Witten. Parity Invariance For Strings In Twistor Space , 2004, hep-th/0403199.
[48] R. Roiban,et al. On the tree level S matrix of Yang-Mills theory , 2004, hep-th/0403190.
[49] E. Witten. Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.
[50] I. Bars. Survey of two-time physics , 2000, hep-th/0008164.
[51] I. Bars. Conformal symmetry and duality between free particle, H atom, and harmonic oscillator , 1998, hep-th/9804028.
[52] O. Andreev,et al. Gauged duality, conformal symmetry, and spacetime with two times , 1998, hep-th/9803188.
[53] C. Kounnas,et al. String and particle with two times , 1997, hep-th/9705205.
[54] C. Kounnas,et al. Theories with two times , 1997, hep-th/9703060.
[55] E. Witten. On quantum gauge theories in two dimensions , 1991 .
[56] D. Gross,et al. String Theory Beyond the Planck Scale , 1988 .
[57] M. Green. World sheets for world sheets , 1987 .
[58] R. Marnelius. Manifestly conformal-covariant description of spinning and charged particles , 1979 .
[59] S. Ferrara,et al. Conformal Algebra in Space-Time and Operator Product Expansion , 1973 .
[60] D. E. Roberts,et al. DUAL MODELS WITHOUT TACHYONS - A NEW APPROACH , 1972 .
[61] A. Salam,et al. Finite-component field representations of the conformal group , 1969 .
[62] N. MANLEY‐COOPER,et al. Projectors , 1967, British journal of medical education.
[63] P. Dirac. Wave equations in conformal space , 1936 .