Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics

Dissecting Plasmodium drug resistance Malaria is a deadly disease with no effective vaccine. Physicians thus depend on antimalarial drugs to save lives, but such compounds are often rendered ineffective when parasites evolve resistance. Cowell et al. systematically studied patterns of Plasmodium falciparum genome evolution by analyzing the sequences of clones that were resistant to diverse antimalarial compounds across the P. falciparum life cycle (see the Perspective by Carlton). The findings identify hitherto unrecognized drug targets and drug-resistance genes, as well as additional alleles in known drug-resistance genes. Science, this issue p. 191; see also p. 159 Genome sequencing elucidates potential drug resistance in the malaria parasite and identifies antimalarial targets. Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target–inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.

[1]  A. Forer,et al.  The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. I. Kinetochore microtubules that re-form after treatment with colcemid. , 1985, Journal of cell science.

[2]  T. Wellems,et al.  Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Thomas E. Wellems,et al.  Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.

[4]  T. Taraschi,et al.  Plasmodium falciparum: a simple, rapid method for detecting parasite clones in microtiter plates. , 1997, Experimental parasitology.

[5]  E. Meyerowitz,et al.  The AP2/EREBP family of plant transcription factors. , 1998, Biological chemistry.

[6]  H. Schweizer Triclosan: a widely used biocide and its link to antibiotics. , 2001, FEMS microbiology letters.

[7]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[8]  M. Gatton,et al.  High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Yongyuth Yuthavong,et al.  Insights into antifolate resistance from malarial DHFR-TS structures , 2003, Nature Structural Biology.

[10]  I. Gluzman,et al.  A Plasmodium falciparum Dipeptidyl Aminopeptidase I Participates in Vacuolar Hemoglobin Degradation* , 2004, Journal of Biological Chemistry.

[11]  B. Gasnier The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids , 2004, Pflügers Archiv.

[12]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[13]  C. Paulusma,et al.  The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. , 2005, Biochimica et biophysica acta.

[14]  Y. Yuthavong,et al.  Subunit complementation of thymidylate synthase in Plasmodium falciparum bifunctional dihydrofolate reductase-thymidylate synthase. , 2005, Molecular and biochemical parasitology.

[15]  Yingyao Zhou,et al.  A Systematic Map of Genetic Variation in Plasmodium falciparum , 2006 .

[16]  D. Chakrabarti,et al.  Structurally simple, potent, Plasmodium selective farnesyltransferase inhibitors that arrest the growth of malaria parasites. , 2006, Journal of medicinal chemistry.

[17]  Graham F Hatfull,et al.  Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase , 2006, Nature Methods.

[18]  Lippincott-Schwartz,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S8 Table S1 Movies S1 to S3 a " Silent " Polymorphism in the Mdr1 Gene Changes Substrate Specificity Corrected 30 November 2007; See Last Page , 2022 .

[19]  F. Nosten,et al.  Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. , 2006, Molecular biology and evolution.

[20]  C. Press Cell host & microbe , 2007 .

[21]  K. Kirk,et al.  Localisation of a candidate anion transporter to the surface of the malaria parasite. , 2007, Biochemical and biophysical research communications.

[22]  P. Rathod,et al.  Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. , 2007, Molecular and biochemical parasitology.

[23]  P. Newton,et al.  Adaptive Copy Number Evolution in Malaria Parasites , 2008, PLoS genetics.

[24]  Peter G. Schultz,et al.  In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen , 2008, Proceedings of the National Academy of Sciences.

[25]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[26]  D. Fidock,et al.  Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif , 2008, Molecular microbiology.

[27]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[28]  F. Russel,et al.  Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane , 2009, Malaria Journal.

[29]  Yang Zhang,et al.  Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction , 2009, BMC Genomics.

[30]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[31]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[32]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[33]  D. Fidock,et al.  A method for rapid genetic integration into Plasmodium falciparum utilizing mycobacteriophage Bxb1 integrase. , 2010, Methods in molecular biology.

[34]  Manuel Llinás,et al.  Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite , 2010, PLoS pathogens.

[35]  James R. Brown,et al.  Thousands of chemical starting points for antimalarial lead identification , 2010, Nature.

[36]  May Ho,et al.  Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs , 2010, Nature Genetics.

[37]  Bruce Russell,et al.  Spiroindolones, a Potent Compound Class for the Treatment of Malaria , 2010, Science.

[38]  Anang A. Shelat,et al.  Chemical genetics of Plasmodium falciparum , 2010, Nature.

[39]  L. Purcell,et al.  Identification of a Mutant PfCRT-Mediated Chloroquine Tolerance Phenotype in Plasmodium falciparum , 2010, PLoS pathogens.

[40]  P. Courvalin,et al.  Overexpression of Resistance-Nodulation-Cell Division Pump AdeFGH Confers Multidrug Resistance in Acinetobacter baumannii , 2010, Antimicrobial Agents and Chemotherapy.

[41]  Badry Bursulaya,et al.  Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. , 2010, Genome research.

[42]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[43]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[44]  M. Bogyo,et al.  Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. , 2011, Molecular and biochemical parasitology.

[45]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[46]  Yingyao Zhou,et al.  Imaging of Plasmodium Liver Stages to Drive Next-Generation Antimalarial Drug Discovery , 2011, Science.

[47]  E. Winzeler,et al.  Validation of isoleucine utilization targets in Plasmodium falciparum , 2011, Proceedings of the National Academy of Sciences.

[48]  John A. Tallarico,et al.  Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin , 2012, Cell host & microbe.

[49]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[50]  Agus Salim,et al.  Statistical challenges associated with detecting copy number variations with next-generation sequencing , 2012, Bioinform..

[51]  Jennifer L. Guler,et al.  Asexual Populations of the Human Malaria Parasite, Plasmodium falciparum, Use a Two-Step Genomic Strategy to Acquire Accurate, Beneficial DNA Amplifications , 2013, PLoS pathogens.

[52]  Geoffrey L. Johnston,et al.  Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families , 2013, PLoS genetics.

[53]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[54]  Robert W. Sauerwein,et al.  Targeting Plasmodium PI(4)K to eliminate malaria , 2013, Nature.

[55]  Samuel A. Assefa,et al.  Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya , 2013, Scientific Reports.

[56]  D. Serre,et al.  Whole Genome Sequencing of Field Isolates Reveals a Common Duplication of the Duffy Binding Protein Gene in Malagasy Plasmodium vivax Strains , 2013, PLoS neglected tropical diseases.

[57]  Alok K. Sharma,et al.  The SLC26 gene family of anion transporters and channels. , 2013, Molecular aspects of medicine.

[58]  J. Martínez,et al.  RND multidrug efflux pumps: what are they good for? , 2013, Front. Microbio..

[59]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[60]  E. Winzeler,et al.  Using genetic methods to define the targets of compounds with antimalarial activity. , 2013, Journal of medicinal chemistry.

[61]  Jeremy N. Burrows,et al.  The Open Access Malaria Box: A Drug Discovery Catalyst for Neglected Diseases , 2013, PloS one.

[62]  John R. Walker,et al.  Identification of pathogen genomic variants through an integrated pipeline , 2014, BMC Bioinformatics.

[63]  D. Kwiatkowski,et al.  A Genome Wide Association Study of Plasmodium falciparum Susceptibility to 22 Antimalarial Drugs in Kenya , 2014, PloS one.

[64]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[65]  Zbynek Bozdech,et al.  Structural polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to quinoline drugs , 2014, Molecular microbiology.

[66]  Hongshen Ma,et al.  (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium , 2014, Proceedings of the National Academy of Sciences.

[67]  Mihir Kekre,et al.  Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis , 2014, PLoS genetics.

[68]  S. Paul,et al.  Multidrug resistance in fungi: regulation of transporter-encoding gene expression , 2014, Front. Physiol..

[69]  Baldur P Magnusson,et al.  Spiroindolone KAE609 for falciparum and vivax malaria. , 2014, The New England journal of medicine.

[70]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[71]  K. Kuhen,et al.  KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission , 2014, Antimicrobial Agents and Chemotherapy.

[72]  Elizabeth A. Winzeler,et al.  Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials , 2014, ACS chemical biology.

[73]  David W. Gray,et al.  A novel multiple-stage antimalarial agent that inhibits protein synthesis , 2015, Nature.

[74]  R. Dutzler,et al.  Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family , 2015, Nature Structural &Molecular Biology.

[75]  D. Wirth,et al.  Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt , 2015, Proceedings of the National Academy of Sciences.

[76]  Gregory M. Goldgof,et al.  A broad analysis of resistance development in the malaria parasite , 2016, Nature Communications.

[77]  X. Su,et al.  Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border , 2016, Scientific Reports.

[78]  Victoria C. Corey,et al.  UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes , 2016, Nature Microbiology.

[79]  Benito Munoz,et al.  Diversity-oriented synthesis yields novel multistage antimalarial inhibitors , 2016, Nature.

[80]  Manuel Llinás,et al.  Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways , 2016, Antimicrobial Agents and Chemotherapy.

[81]  Nicholas P. J. Day,et al.  Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.

[82]  Victoria C. Corey,et al.  CRISPR‐Cas9‐modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine‐containing compounds but potentiates artemisinin‐based combination therapy partner drugs , 2016, Molecular microbiology.

[83]  K. Matuschewski,et al.  Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite , 2016, Nature Communications.

[84]  R. Brun,et al.  Discovery and Characterization of ACT‐451840: an Antimalarial Drug with a Novel Mechanism of Action , 2016, ChemMedChem.

[85]  Victoria C. Corey,et al.  Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance , 2016, mBio.

[86]  Manuel Llinás,et al.  Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. , 2017, Cell host & microbe.

[87]  Victoria C. Corey,et al.  Esterase mutation is a mechanism of resistance to antimalarial compounds , 2017, Nature Communications.

[88]  D. Fidock,et al.  A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study , 2017, The Lancet. Infectious diseases.

[89]  D. Fidock,et al.  Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic , 2017, Nature Medicine.

[90]  A. Guarné,et al.  FHA domains: Phosphopeptide binding and beyond. , 2017, Progress in biophysics and molecular biology.

[91]  J. Rayner,et al.  A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle , 2017, Cell host & microbe.

[92]  Patrick G. Schupp,et al.  A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue , 2017, Nature Communications.