Image filtering via generalized scale

In medical imaging, low signal-to-noise ratio (SNR) and/or contrast-to-noise ratio (CNR) often cause many image processing algorithms to perform poorly. Postacquisition image filtering is an important off-line image processing approach widely employed to enhance the SNR and CNR. A major drawback of many filtering techniques is image degradation by diffusing/blurring edges and/or fine structures. In this paper, we introduce a scale-based filtering method that employs scale-dependent diffusion conductance to perform filtering. This approach utilizes novel object scale information via a concept called generalized scale, which imposes no shape, size, or anisotropic constraints unlike previously published ball scale-based filtering strategies. The object scale allows us to better control the filtering process by constraining smoothing in regions with fine details and in the vicinity of boundaries while permitting effective smoothing in the interior of homogeneous regions. A new quantitative evaluation strategy that captures the SNR to CNR trade-off behavior of filtering methods is presented. The evaluations based on the Brainweb data sets show superior performance of generalized scale-based diffusive filtering over two existing methods, namely, ball scale-based and nonlinear complex diffusion processes. Qualitative experiments based on both phantom and patient magnetic resonance images demonstrate that the generalized scale-based approach leads to better preservation of fine details and edges.

[1]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[3]  Edward R. Vrscay,et al.  Fractal image denoising , 2003, IEEE Trans. Image Process..

[4]  Punam K. Saha,et al.  Tensor scale: A local morphometric parameter with applications to computer vision and image processing , 2005, Comput. Vis. Image Underst..

[5]  Hae Yong Kim,et al.  Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI , 2005, Comput. Vis. Image Underst..

[6]  Jayaram K. Udupa,et al.  Shell rendering , 1993, IEEE Computer Graphics and Applications.

[7]  K. Castleman,et al.  Flux-based anisotropic diffusion applied to enhancement of 3-D angiogram , 2002 .

[8]  Max A. Viergever,et al.  Diffusion-enhanced visualization and quantification of vascular anomalies in three-dimensional rotational angiography: Results of an in-vitro evaluation , 2002, Medical Image Anal..

[9]  Azriel Rosenfeld,et al.  Iterative Enhancemnent of Noisy Images , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Henry Fuchs,et al.  3D imaging in medicine : algorithms, systems, applications , 1990 .

[11]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[12]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[14]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[15]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jayaram K. Udupa,et al.  Optimum Image Thresholding via Class Uncertainty and Region Homogeneity , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  G. Herman,et al.  3D Imaging In Medicine , 1991 .

[18]  Bernhard Schölkopf,et al.  Iterative kernel principal component analysis for image modeling , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Yehoshua Y. Zeevi,et al.  Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..

[20]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[21]  Ping Liang Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[22]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[23]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[24]  Johan Montagnat,et al.  Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images , 2003, Pattern Recognit. Lett..

[25]  W. Niessen,et al.  Selection of task-dependent diffusion filters for the post-processing of SPECT images. , 1998, Physics in medicine and biology.

[26]  Jayaram K. Udupa,et al.  Generalized scale-based image filtering , 2005, SPIE Medical Imaging.

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  Jayaram K. Udupa,et al.  Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation , 2000, Comput. Vis. Image Underst..

[29]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[30]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[31]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[32]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[33]  Lei Zhang,et al.  Noise Reduction for Magnetic Resonance Images via Adaptive Multiscale Products Thresholding , 2003, IEEE Trans. Medical Imaging.

[34]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[35]  M. Stella Atkins,et al.  Fully automatic segmentation of the brain in MRI , 1998, IEEE Transactions on Medical Imaging.

[36]  Ponnada A Narayana,et al.  Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis. , 2002, Medical physics.

[37]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[38]  Xin Wang,et al.  On the gradient inverse weighted filter [image processing] , 1992, IEEE Trans. Signal Process..

[39]  Dewey Odhner,et al.  3DVIEWNIX: an open, transportable, multidimensional, multimodality, multiparametric imaging software system , 1994, Medical Imaging.

[40]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[41]  Jayaram K. Udupa,et al.  Generalized scale: Theory, algorithms, and application to image inhomogeneity correction , 2006, Comput. Vis. Image Underst..

[42]  Chang Beom Ahn,et al.  Adaptive template filtering for signal-to-noise ratio enhancement in magnetic resonance imaging , 1999, IEEE Transactions on Medical Imaging.

[43]  Dennis M. Healy,et al.  Wavelet transform domain filters: a spatially selective noise filtration technique , 1994, IEEE Trans. Image Process..

[44]  O. Demirkaya Anisotropic diffusion filtering of PET attenuation data to improve emission images. , 2002, Physics in medicine and biology.

[45]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[46]  Jayaram K. Udupa,et al.  Scale-Based Diffusive Image Filtering Preserving Boundary Sharpness and Fine Structures , 2002, IEEE Trans. Medical Imaging.

[47]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  David C. Wang,et al.  Gradient inverse weighted smoothing scheme and the evaluation of its performance , 1981 .