Charge transport in III-V narrow bandgap semiconductor nanowires

This thesis describes charge transport in III-V narrow bandgap semiconductor nanowires. We are particularly interested in quantum transport in InSb, InAs and InP-InAs core-shell nanowires. According to the type of transport mechanism dominating in the devices, this thesis can be divided into four parts.In the first part of this thesis, we investigated the temperature dependent transport properties of InSb nanowires using field effect transistors made of InSb nanowires grown by chemical vapor deposition. Ambipolar transport is observed in measurements in a wide range of temperatures up to 300 K. A bandgap of 220 meV is extracted from the temperature dependent measurements. Hole and electron field effect mobility are determined and their temperature dependence studied. The off state current shows a strong dependence on the temperature and the channel lengths of the transistors. In the second part of this thesis, spin relaxation and quantum interference in InSb nanowires are explored. Low-field magneto-conductance measurements are performed and a crossover from weak antilocalization to weak localization is observed. The experimental results are well explained with quasi one dimensional weak localization theory. Spin relaxation length and phase coherence length are defined. A strong spin-orbit strength of αR = 0.4 eVÅ-0.87 eVÅ is extracted. In the third part of this thesis, electron transport in a single quantum dot is studied in the weak and strong dot coupling regimes. The single quantum dots are formed in InSb nanowires by side gates. Various transport features such as sequential tunneling, excited states, and cotunnelings are investigated. Low temperature transport properties of InP-InAs core-shell nanowires are also explored and the coulomb blockade effect is revealed from a quantum structure extending over the entire core-shell nanowire. In the last part of this thesis, we report on electron transport through double quantum dots in InSb and InAs nanowires defined by side gates. From the measurements in the weak inter dot coupling regime, Pauli spin blockade is observed. The evolutions of states in the Pauli spin-blockade region with magnetic field is also studied. (Less)

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. J. Elliott,et al.  Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors , 1954 .

[3]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[4]  G. V. Chester,et al.  Solid State Physics , 2000 .

[5]  B APPEL,et al.  L E. , 1963, Skin.

[6]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[7]  G. E. Pikus,et al.  Spin relaxation of electrons due to scattering by holes , 1975 .

[8]  P. Anderson,et al.  Possible explanation of nonlinear conductivity in thin-film metal wires , 1979 .

[9]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[10]  A. I. Larkin,et al.  Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System , 1980 .

[11]  G. Bergmann Weak anti-localization—An experimental proof for the destructive interference of rotated spin 12 , 1982 .

[12]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[13]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[14]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[15]  S. Chakravarty,et al.  Weak localization: The quasiclassical theory of electrons in a random potential , 1986 .

[16]  C. Beenakker,et al.  Boundary scattering and weak localization of electrons in a magnetic field. , 1988, Physical review. B, Condensed matter.

[17]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[18]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[19]  Chang,et al.  Quantum interference effects and spin-orbit interaction in quasi-one-dimensional wires and rings. , 1992, Physical review. B, Condensed matter.

[20]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[21]  G. E. Pikus,et al.  Weak localization in quantum wells with spin-orbit interaction , 1994 .

[22]  E. Ivchenko,et al.  Heavy-light hole mixing at zinc-blende (001) interfaces under normal incidence. , 1996, Physical review. B, Condensed matter.

[23]  Krebs,et al.  Giant Optical Anisotropy of Semiconductor Heterostructures with No Common Atom and the Quantum-Confined Pockels Effect. , 1996, Physical review letters.

[24]  Nitin Samarth,et al.  Room-Temperature Spin Memory in Two-Dimensional Electron Gases , 1997 .

[25]  D. Awschalom,et al.  Resonant Spin Amplification in n-Type GaAs , 1998 .

[26]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[27]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[28]  D. Awschalom,et al.  Electron Spin and Optical Coherence in Semiconductors , 1999 .

[29]  K. W. Kim,et al.  Progressive suppression of spin relaxation in two-dimensional channels of finite width , 2000 .

[30]  Cun-Zheng Ning,et al.  A novel mechanism for spin dephasing due to spin-conserving scatterings , 2000 .

[31]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[32]  Yuli V. Nazarov,et al.  Spin relaxation in semiconductor quantum dots , 1999, cond-mat/9907367.

[33]  W. G. van der Wiel,et al.  Electron cotunneling in a semiconductor quantum dot. , 2000, Physical review letters.

[34]  D D Awschalom,et al.  Ultrafast Manipulation of Electron Spin Coherence , 2001, Science.

[35]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[36]  W. G. van der Wiel,et al.  Out-of-equilibrium Kondo effect in a mesoscopic device. , 2002, Physical review letters.

[37]  Jeff M. Byers,et al.  Spin Dynamics in Semiconductors , 2002 .

[38]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[39]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[40]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[41]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[42]  D. DiVincenzo,et al.  Spin-orbit coupling and time-reversal symmetry in quantum gates , 2003, cond-mat/0303474.

[43]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[44]  X. Cartoixà,et al.  A resonant spin lifetime transistor , 2003 .

[45]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[46]  J. Schliemann,et al.  Nonballistic spin-field-effect transistor. , 2002, Physical review letters.

[47]  A. Gossard,et al.  Cotunneling spectroscopy in few-electron quantum dots. , 2004, Physical Review Letters.

[48]  Y. Pershin,et al.  Effect of spin-orbit interaction and in-plane magnetic field on the conductance of a quasi-one-dimensional system , 2003, cond-mat/0311143.

[49]  S. Ulloa,et al.  Spin-orbit coupling and intrinsic spin mixing in quantum dots , 2003, cond-mat/0307027.

[50]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[51]  A. Gossard,et al.  Cotunneling-mediated transport through excited states in the Coulomb-blockade regime. , 2005, Physical review letters.

[52]  C. Thelander,et al.  Spin relaxation in InAs nanowires studied by tunable weak antilocalization , 2005 .

[53]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[54]  L. Vandersypen,et al.  Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field , 2005, Science.

[55]  C. Emary,et al.  Spin-orbit-driven coherent oscillations in a few-electron quantum dot. , 2004, Physical review letters.

[56]  A. C. Johnson,et al.  Charge Sensing and Spin Dynamics in GaAs Quantum Dots , 2005 .

[57]  Lars Samuelson,et al.  Tunable double quantum dots in InAs nanowires defined by local gate electrodes. , 2005, Nano letters.

[58]  Xuedong Hu,et al.  Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. , 2006, Physical review letters.

[59]  A. Sørensen,et al.  Spin-orbit mediated control of spin qubits. , 2006, Physical review letters.

[60]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[61]  O. Wunnicke,et al.  Gate capacitance of back-gated nanowire field-effect transistors , 2006 .

[62]  S. Kettemann,et al.  Dimensional Control of Antilocalization and Spin Relaxation in Quantum Wires , 2007 .

[63]  R. Świrkowicz,et al.  Electron transport through parallel double quantum dots with interdot correlations , 2007 .

[64]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[65]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[66]  K. Ensslin,et al.  Spin-state mixing in InAs double quantum dots , 2007, 0704.0980.

[67]  G. Schon,et al.  Cotunneling assisted sequential tunneling in multilevel quantum dots , 2008, 0801.0698.

[68]  Philippe Caroff,et al.  High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.

[69]  S. Hamdioui,et al.  Why is CMOS scaling coming to an END? , 2008, 2008 3rd International Design and Test Workshop.

[70]  C. Schönenberger,et al.  Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. , 2008, Nano letters.

[71]  Characteristic Features of 1-D Ballistic Transport in Nanowire MOSFETs , 2008, IEEE Transactions on Nanotechnology.

[72]  M. Dyakonov Basics of Semiconductor and Spin Physics , 2008 .

[73]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[74]  Philippe Caroff,et al.  Giant, level-dependent g factors in InSb nanowire quantum dots. , 2009, Nano letters.

[75]  W. Gong,et al.  Spin-dependent electron transport through a parallel double-quantum-dot structure , 2008, 0809.4913.

[76]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[77]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[78]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[79]  Klaus Ensslin,et al.  Suppression of weak antilocalization in InAs nanowires , 2010 .

[80]  Philippe Caroff,et al.  Crystal phase engineering in single InAs nanowires. , 2010, Nano letters.

[81]  Philippe Caroff,et al.  Diameter Dependence of the Wurtzite-Zinc Blende Transition in InAs Nanowires , 2010 .

[82]  Suman Datta,et al.  Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. , 2010, Nano letters.

[83]  Suman Datta,et al.  Temperature-Dependent $I$$V$ Characteristics of a Vertical $\hbox{In}_{0.53}\hbox{Ga}_{0.47}\hbox{As}$, 2010, IEEE Electron Device Letters.

[84]  R. L. Kallaher,et al.  Spin-orbit interaction determined by antilocalization in an InSb quantum well , 2010 .

[85]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[86]  Satoshi Sugahara,et al.  Spin-Transistor Electronics: An Overview and Outlook , 2010, Proceedings of the IEEE.

[87]  V. Zwiller,et al.  Crystal phase quantum dots. , 2010, Nano letters.

[88]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[89]  E. Lind,et al.  Temperature dependent properties of InSb and InAs nanowire field-effect transistors , 2010 .

[90]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[91]  T. Schäpers,et al.  Field effect transistor based on single crystalline InSb nanowire , 2011 .

[92]  Unipolar and bipolar operation of InAs/InSb nanowire heterostructure field-effect transistors , 2011 .

[93]  C. W. J. Beenakker,et al.  Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling , 2011 .

[94]  Room temperature device performance of electrodeposited InSb nanowire field effect transistors , 2011, 1104.5436.

[95]  L. Wernersson,et al.  InSb Nanowire Field-Effect Transistors and Quantum-Dot Devices , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[96]  F. Beltram,et al.  Electrostatic spin control in InAs/InP nanowire quantum dots. , 2012, Nano letters.

[97]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[98]  H. Gotoh,et al.  Proposal of spin complementary field effect transistor , 2012 .

[99]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[100]  Val Zwiller,et al.  Growth and optical properties of axial hybrid III-V/silicon nanowires. , 2012, Nature communications.

[101]  N. Lindner,et al.  Topological Quantum Computation—From Basic Concepts to First Experiments , 2013, Science.

[102]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[103]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[104]  Jing Guo,et al.  Ballistic Inas Nanowire Transistors , 2022 .

[105]  K. Dick,et al.  Control and understanding of kink formation in InAs–InP heterostructure nanowires , 2013, Nanotechnology.

[106]  Daniel Loss,et al.  Topological superconductivity and Majorana fermions in RKKY systems. , 2013, Physical review letters.

[107]  E. Bakkers,et al.  Fast spin-orbit qubit in an indium antimonide nanowire. , 2012, Physical review letters.

[108]  E. Bakkers,et al.  Quantum computing based on semiconductor nanowires , 2013 .

[109]  A. Manolescu,et al.  Spin and impurity effects on flux-periodic oscillations in core-shell nanowires , 2014, 1404.1798.

[110]  D. Antoniadis,et al.  Off-State Leakage Induced by Band-to-Band Tunneling and Floating-Body Bipolar Effect in InGaAs Quantum-Well MOSFETs , 2014, IEEE Electron Device Letters.

[111]  Håkan Pettersson,et al.  Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning , 2014, Nature Communications.

[112]  I. V. Weperen Quantum Transport in Indium Antimonide Nanowires: Investigating building blocks for Majorana devices , 2014 .

[113]  E. Bakkers,et al.  Towards high mobility InSb nanowire devices , 2014, Nanotechnology.

[114]  Hongqi Xu,et al.  Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy , 2015 .

[115]  E. Bakkers,et al.  Spin-orbit interaction in InSb nanowires , 2014, 1412.0877.

[116]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[117]  D. Antoniadis,et al.  Physics and Mitigation of Excess OFF-State Current in InGaAs Quantum-Well MOSFETs , 2015, IEEE Transactions on Electron Devices.

[118]  Siglas de Palabras A.M.E. , 2016 .

[119]  Zhiming M. Wang,et al.  Indium Antimonide Nanowires: Synthesis and Properties , 2016, Nanoscale Research Letters.

[120]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[121]  Shaoyun Huang,et al.  Growth of High Material Quality Group III-Antimonide Semiconductor Nanowires by a Naturally Cooling Process , 2016, Nanoscale Research Letters.

[122]  Stephanie Thalberg,et al.  Fundamentals Of Modern Vlsi Devices , 2016 .

[123]  K. Dick,et al.  Schottky barrier and contact resistance of InSb nanowire field-effect transistors , 2016, Nanotechnology.

[124]  Jiannis K. Pachos,et al.  A Short Introduction to Topological Quantum Computation , 2017, 1705.04103.

[125]  A. Manolescu,et al.  Majorana states in prismatic core-shell nanowires , 2017, 1705.04950.

[126]  Guang-Yao Huang,et al.  Anisotropic Pauli Spin-Blockade Effect and Spin-Orbit Interaction Field in an InAs Nanowire Double Quantum Dot. , 2018, Nano letters.

[127]  M. F. Gonzalez-Zalba Solid-state qubits , 2018, 1801.06722.

[128]  M. Nilsson Charge and Spin Transport in Parallel-Coupled Quantum Dots in Nanowires , 2018 .

[129]  A. Manolescu,et al.  Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors , 2018, Beilstein journal of nanotechnology.

[130]  A. Bertoni,et al.  Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires , 2018, 1801.09905.

[131]  Jianhua Zhao,et al.  Suppressing the excess OFF-state current of short-channel InAs nanowire field-effect transistors by nanoscale partial-gate , 2018, Nanotechnology.

[132]  P. Ye,et al.  Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors , 2018 .

[133]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[134]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.