A statistical approach to WindSat ocean surface wind vector retrieval

WindSat is the first space-based polarimetric microwave radiometer. It is designed to evaluate the capability of polarimetric microwave radiometry to measure ocean surface wind vectors from space. The sensor provides risk reduction for the National Polar-orbiting Operational Environmental Satellite System Conical Scanning Microwave Imager/Sounder, which is planned to provide wind vector data operationally starting in 2010. The channel set also enables retrieval of sea surface temperature, and columnar water vapor and cloud liquid water over the oceans. We describe statistical algorithms for retrieval of these parameters, and a combined statistical/maximum-likelihood estimator algorithm for retrieval of wind vectors. We present a quantitative analysis of the initial wind vector retrievals relative to QuikSCAT wind vectors.

[1]  W. Linwood Jones,et al.  The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  W. Linwood Jones,et al.  WindSat post-launch calibration , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Stephen Cox,et al.  A nonlinear optimization algorithm for WindSat wind vector retrievals , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[5]  R. Kwok,et al.  Polarimetric scattering and emission properties of targets with reflection symmetry , 1994 .

[6]  Thomas Meissner,et al.  An updated analysis of the ocean surface wind direction signal in passive microwave brightness temperatures , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Paul S. Chang,et al.  Ocean surface wind retrievals using the TRMM microwave imager , 2000, IEEE Trans. Geosci. Remote. Sens..

[8]  Thomas Meissner,et al.  Geolocation and pointing accuracy analysis for the WindSat sensor , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  David Kunkee,et al.  Phase one development of the NPOESS Conical-scanning Microwave Imager/Sounder (CMIS) , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[10]  Bryan W. Stiles,et al.  Direction interval retrieval with thresholded nudging: a method for improving the accuracy of QuikSCAT winds , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  T. Wilheit,et al.  An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer , 1980 .

[12]  David G. Long,et al.  A median-filter-based ambiguity removal algorithm for NSCAT , 1991, IEEE Trans. Geosci. Remote. Sens..

[13]  Simon Yueh,et al.  Polarimetric microwave brightness signatures of ocean wind directions , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .