On computer-assisted classification of coupled integrable equations
暂无分享,去创建一个
[1] Marc Moreno. Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999 .
[2] Michael Kalkbrener,et al. A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..
[3] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[4] Colin Rogers,et al. On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies , 1987 .
[5] Richard S. Palais. The symmetries of solitons , 1997 .
[6] S. I. Svinolupov. On the analogues of the Burgers equation , 1989 .
[7] M. M. Maza. On Triangular Decompositions of Algebraic Varieties , 2000 .
[8] Caroline Verhoeven,et al. Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation , 2000 .
[9] Peter J. Olver,et al. Integrable Evolution Equations on Associative Algebras , 1998 .
[10] Mikhail V. Foursov,et al. On integrable coupled KdV-type systems , 2000 .
[11] Vladimir P. Gerdt,et al. Computer Classification of Integrable Coupled KdV-like Systems , 1990, J. Symb. Comput..
[12] Marc Moreno Maza,et al. On the Theories of Triangular Sets , 1999, J. Symb. Comput..
[13] François Lemaire,et al. Computing canonical representatives of regular differential ideals , 2000, ISSAC.
[14] Daniel Lazard,et al. A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..
[15] Wenjun Wu. A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.
[16] David J. Kaup,et al. On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .
[17] F. Ollivier. Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .
[18] Alexey Borisovich Shabat,et al. The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .
[19] P. Drazin,et al. Solitons: An Introduction , 1989 .
[20] Thomas Wolf,et al. A symmetry test for quasilinear coupled systems , 1999 .
[21] S. Novikov,et al. Theory of Solitons: The Inverse Scattering Method , 1984 .
[22] Jan A. Sanders,et al. ON THE INTEGRABILITY OF HOMOGENEOUS SCALAR EVOLUTION EQUATIONS , 1998 .
[23] Huan-Qiang Zhou,et al. Connection between infinite conservation laws in a coupled Ziber-Shabat-Mikhailov equation and a coupled Kaup-Kupershmidt equation , 1990 .
[24] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[25] P. Clarkson,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .
[26] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[27] Yang Lu. Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .
[28] Marc Moreno Maza,et al. Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999, J. Symb. Comput..
[29] P. Olver,et al. Non-abelian integrable systems of the derivative nonlinear Schrödinger type , 1998 .
[30] V. Sokolov,et al. The Symmetry Approach to Classification of Integrable Equations , 1991 .
[31] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .