On computer-assisted classification of coupled integrable equations

We show how the triangularization method of the second author can be successfully applied to the problem of classification of homogeneous coupled integrable equations. The classifications rely on the recent algorithm developed by the first author that requires solving 17 systems of polynomial equations. We show that these systems can be completely resolved in the case of coupled Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt—type equations.

[1]  Marc Moreno Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999 .

[2]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Colin Rogers,et al.  On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies , 1987 .

[5]  Richard S. Palais The symmetries of solitons , 1997 .

[6]  S. I. Svinolupov On the analogues of the Burgers equation , 1989 .

[7]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[8]  Caroline Verhoeven,et al.  Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation , 2000 .

[9]  Peter J. Olver,et al.  Integrable Evolution Equations on Associative Algebras , 1998 .

[10]  Mikhail V. Foursov,et al.  On integrable coupled KdV-type systems , 2000 .

[11]  Vladimir P. Gerdt,et al.  Computer Classification of Integrable Coupled KdV-like Systems , 1990, J. Symb. Comput..

[12]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[13]  François Lemaire,et al.  Computing canonical representatives of regular differential ideals , 2000, ISSAC.

[14]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[15]  Wenjun Wu A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.

[16]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[17]  F. Ollivier Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .

[18]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[19]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[20]  Thomas Wolf,et al.  A symmetry test for quasilinear coupled systems , 1999 .

[21]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[22]  Jan A. Sanders,et al.  ON THE INTEGRABILITY OF HOMOGENEOUS SCALAR EVOLUTION EQUATIONS , 1998 .

[23]  Huan-Qiang Zhou,et al.  Connection between infinite conservation laws in a coupled Ziber-Shabat-Mikhailov equation and a coupled Kaup-Kupershmidt equation , 1990 .

[24]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[25]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[26]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[27]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[28]  Marc Moreno Maza,et al.  Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999, J. Symb. Comput..

[29]  P. Olver,et al.  Non-abelian integrable systems of the derivative nonlinear Schrödinger type , 1998 .

[30]  V. Sokolov,et al.  The Symmetry Approach to Classification of Integrable Equations , 1991 .

[31]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .