Enhancing volume visualization with lightness anchoring theory

Volume rendering is an effective method for visualizing 3D data. However, it's still difficult to obtain an effective image, especially when there are complicated structures which may cause underexposure problems. Adjusting light sources and parameters adds computational cost, without alleviating the underexposure phenomenon. This paper presents the novel idea of applying lightness anchoring theory for volume visualization enhancement. An anchoring hypothesis, the Highest-Luminance-As-White rule, is adjusted to adapt our volume rendered image. After employing the lightness anchored optimization, underexposed areas can be revealed while still preserving the local depth relationship.

[1]  Ivan Viola,et al.  A Multidirectional Occlusion Shading Model for Direct Volume Rendering , 2010, Comput. Graph. Forum.

[2]  A. Gilchrist,et al.  Relative area and relative luminance combine to anchor surface lightness values , 1999, Perception & psychophysics.

[3]  Mathias Schott,et al.  A Directional Occlusion Shading Model for Interactive Direct Volume Rendering , 2009, Comput. Graph. Forum.

[4]  Hans-Peter Seidel,et al.  Lightness Perception in Tone Reproduction for High Dynamic Range Images , 2005, Comput. Graph. Forum.

[5]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[6]  Youngjoon Han,et al.  Image Contrast Enhancement based Sub-histogram Equalization Technique without Over-equalization Noise , 2009 .

[7]  Xiaoru Yuan,et al.  HDR VolVis: high dynamic range volume visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Neeharika Adabala,et al.  Uncertainty visualization using HDR volume rendering , 2011, The Visual Computer.

[9]  Erik Reinhard,et al.  Calibrated image appearance reproduction , 2012, ACM Trans. Graph..

[10]  Renato Pajarola,et al.  Extinction-Based Shading and Illumination in GPU Volume Ray-Casting , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  A. Gilchrist,et al.  An anchoring theory of lightness perception. , 1999, Psychological review.

[12]  Sarah H. Creem-Regehr,et al.  Visual Perception from a Computer Graphics Perspective , 2011 .

[13]  Mathias Schott,et al.  Combined surface and volumetric occlusion shading , 2012, 2012 IEEE Pacific Visualization Symposium.

[14]  Anders Ynnerman,et al.  Local Ambient Occlusion in Direct Volume Rendering , 2010, IEEE Transactions on Visualization and Computer Graphics.

[15]  Anders Ynnerman,et al.  Efficient Visibility Encoding for Dynamic Illumination in Direct Volume Rendering , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  E. Adelson Lightness Perception and Lightness Illusions , 1999 .

[17]  W. Pratt Introduction to Digital Image Processing , 2013 .