暂无分享,去创建一个
[1] Sam T. Roweis,et al. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.
[2] Xiao Wang,et al. Unbiased Contrastive Divergence Algorithm for Training Energy-Based Latent Variable Models , 2020, ICLR.
[3] Peter W. Glynn,et al. Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.
[4] Jianqing Fan. On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .
[5] Boris Leistedt,et al. Improving Gaia Parallax Precision with a Data-driven Model of Stars , 2017, The Astronomical Journal.
[6] Oriol Vinyals,et al. Neural Discrete Representation Learning , 2017, NIPS.
[7] Hugo Larochelle,et al. MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.
[8] L. Devroye. Consistent deconvolution in density estimation , 1989 .
[9] E. Tabak,et al. DENSITY ESTIMATION BY DUAL ASCENT OF THE LOG-LIKELIHOOD ∗ , 2010 .
[10] David N. Spergel,et al. Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to Constrain Distance Estimates , 2019, ArXiv.
[11] B. Vidakovic,et al. Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .
[12] Jian Sun,et al. Identity Mappings in Deep Residual Networks , 2016, ECCV.
[13] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[14] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[15] Yaoliang Yu,et al. Sum-of-Squares Polynomial Flow , 2019, ICML.
[16] Iain Murray,et al. Scalable Extreme Deconvolution , 2019, ArXiv.
[17] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[18] Hugo Larochelle,et al. RNADE: The real-valued neural autoregressive density-estimator , 2013, NIPS.
[19] Iain Murray,et al. Masked Autoregressive Flow for Density Estimation , 2017, NIPS.
[20] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[21] Charlie Nash,et al. Autoregressive Energy Machines , 2019, ICML.
[22] David Duvenaud,et al. Inference Suboptimality in Variational Autoencoders , 2018, ICML.
[23] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[24] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[25] P. Hall,et al. Optimal Rates of Convergence for Deconvolving a Density , 1988 .
[26] Lars Hertel,et al. Approximate Inference for Deep Latent Gaussian Mixtures , 2016 .
[27] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[28] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[29] Murray Shanahan,et al. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.
[30] David Duvenaud,et al. Reinterpreting Importance-Weighted Autoencoders , 2017, ICLR.
[31] Max Welling,et al. Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.
[32] Pieter Abbeel,et al. Variational Lossy Autoencoder , 2016, ICLR.
[33] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[34] Robert L. Taylor,et al. A consistent nonparametric density estimator for the deconvolution problem , 1989 .
[35] Ryan P. Adams,et al. SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models , 2020, ICLR.
[36] Iain Murray,et al. Neural Spline Flows , 2019, NeurIPS.
[37] Raymond J. Carroll,et al. Measurement error in nonlinear models: a modern perspective , 2006 .
[38] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[39] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[40] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[41] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[42] E. Tabak,et al. A Family of Nonparametric Density Estimation Algorithms , 2013 .
[43] Eric Nalisnick,et al. Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..