Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation

ABSTRACTSeismic anisotropy is the fundamental phenomenon of wave propagation in the earth’s interior. Numerical modeling of wave behavior is critical for exploration and global seismology studies. The full elastic (anisotropy) wave equation is often used to model the complexity of velocity anisotropy, but it ignores attenuation anisotropy. I have presented a time-domain displacement-stress formulation of the anisotropic-viscoelastic wave equation, which holds for arbitrarily anisotropic velocity and attenuation 1/Q. The frequency-independent Q model is considered in the seismic frequency band; thus, anisotropic attenuation is mathematically expressed by way of fractional time derivatives, which are solved using the truncated Grunwald-Letnikov approximation. I evaluate the accuracy of numerical solutions in a homogeneous transversely isotropic (TI) medium by comparing with theoretical QP and QS values calculated from the Christoffel equation. Numerical modeling results show that the anisotropic attenuation...

[1]  M. S. King,et al.  Shear-wave velocity and Q anisotropy in rocks: A laboratory study , 1990 .

[2]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[3]  L. Thomsen Weak elastic anisotropy , 1986 .

[4]  Michele Caputo,et al.  Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation. , 2011, Ultrasound in medicine & biology.

[5]  J. Carcione,et al.  Numerical experiments of fracture-induced velocity and attenuation anisotropy , 2014 .

[6]  W. Rizer,et al.  VELOCITY AND ATTENUATION ANISOTROPY CAUSED BY MICROCRACKS AND MACROFRACTURES IN A MULTIAZIMUTH REVERSE VSP , 1993 .

[7]  I. Vasconcelos,et al.  Effective attenuation anisotropy of thin-layered media , 2007 .

[8]  D. Campagna,et al.  Relationship of P-wave seismic attributes, azimuthal anisotropy, and commercial gas pay in 3-D P-wave multiazimuth data, Rulison Field, Piceance Basin, Colorado , 1999 .

[9]  Peter Hubral Foundations of Anisotropy for Exploration Seismics , 1995 .

[10]  Herbert F. Wang,et al.  Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  José M. Carcione,et al.  A generalization of the Fourier pseudospectral method , 2010 .

[13]  Tieyuan Zhu,et al.  Time-reverse modelling of acoustic wave propagation in attenuating media , 2013 .

[14]  J. Carcione ANISOTROPIC Q AND VELOCITY DISPERSION OF FINELY LAYERED MEDIA , 1991 .

[15]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[16]  David Smeulders,et al.  Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom , 2016 .

[17]  Michael Schoenberg,et al.  Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth , 1997 .

[18]  Tariq Alkhalifah An Acoustic Wave Equation For Anisotropic Media , 1998 .

[19]  S. Ge,et al.  The attenuation anisotropy of mudstones and shales in subsurface formations , 2005 .

[20]  Christopher L. MacDonald,et al.  Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory , 2015, J. Comput. Phys..

[21]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[22]  Sergey Fomel,et al.  Q-compensated full waveform inversion using constant-Q wave equation , 2016 .

[23]  I. Tsvankin,et al.  Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media , 2007 .

[24]  Kurt M. Strack,et al.  Society of Exploration Geophysicists , 2007 .

[25]  D. L. Anderson Theory of Earth , 2014 .

[26]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[27]  I. Tsvankin,et al.  Time-Domain Finite-Difference Modeling for Attenuative Anisotropic Media , 2015 .

[28]  J. Carcione,et al.  Fracture-Induced Anisotropic Attenuation , 2012, Rock Mechanics and Rock Engineering.

[29]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[30]  T. Chichinina,et al.  Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data , 2009 .

[31]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[32]  Absorbing Boundary Conditions For Corner Regions , 2003 .

[33]  C. Mccann,et al.  Velocity anisotropy and attenuation of shale in under‐ and overpressured conditions , 2002 .

[34]  Jingwei Hu,et al.  Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation , 2016 .

[35]  José M. Carcione,et al.  Theory and modeling of constant-Q P- and S-waves using fractional time derivatives , 2009 .

[36]  Paul Sava,et al.  Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments , 2013 .

[37]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[38]  A. Best,et al.  A laboratory study of seismic velocity and attenuation anisotropy in near‐surface sedimentary rocks , 2007 .

[39]  Ilya Tsvankin,et al.  Seismic Signatures and Analysis of Reflection Data in Anisotropic Media , 2001 .

[40]  José M. Carcione,et al.  Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives , 2002 .

[41]  I. Tsvankin,et al.  Plane-wave propagation in attenuative transversely isotropic media , 2006 .

[42]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[43]  R. Arts,et al.  Approximation of Velocity And Attenuation In General Anisotropic Rocks , 1992 .

[45]  Leon Thomsen,et al.  Understanding Seismic Anisotropy in Exploration and Exploitation , 2002 .

[46]  T. Zhu,et al.  Approximating constant‐Q seismic propagation in the time domain , 2012 .

[47]  José M. Carcione,et al.  Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives , 2014 .

[48]  J. Carcione ANISOTROPIC Q AND VELOCITY DISPERSION OF FINELY LAYERED MEDIA1 , 1992 .

[49]  Robin M. Weiss,et al.  Solving 3D anisotropic elastic wave equations on parallel GPU devices , 2013 .

[50]  B. Hosten,et al.  Inhomogeneous wave generation and propagation in lossy anisotropic solids. Application to the characterization of viscoelastic composite materials , 1987 .

[51]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .