Nordhaus-Gaddum and other bounds for the chromatic edge-stability number

Abstract Let G be a graph. The chromatic edge-stability number es χ ( G ) of a graph G is the minimum number of edges of G whose removal results in a graph H with χ ( H ) = χ ( G ) − 1 . A Nordhaus–Gaddum type inequality for the chromatic edge-stability number is proved. Sharp upper bounds on es χ are given for general graphs in terms of size and of maximum degree, respectively. All bounds are demonstrated to be sharp. Graphs with es χ = 1 are considered and in particular characterized among k -regular graphs for k ≤ 5 . Several open problems are also stated.

[1]  Xueliang Li,et al.  Skew Spectra of Oriented Bipartite Graphs , 2013, Electron. J. Comb..

[2]  Xuding Zhu Bipartite subgraphs of triangle-free subcubic graphs , 2009, J. Comb. Theory, Ser. B.

[3]  Karen L. Collins,et al.  Nordhaus-Gaddum Theorem for the Distinguishing Chromatic Number , 2013, Electron. J. Comb..

[4]  Moo Young Sohn,et al.  Bondage Numbers of Mycielski Graphs , 2016 .

[5]  Ali Reza Ashrafi,et al.  The bipartite edge frustration of graphs under subdivided edges and their related sums , 2011, Comput. Math. Appl..

[6]  Ernst J. Joubert Improving a Nordhaus-Gaddum type bound for total domination using an algorithm involving vertex disjoint stars , 2017, Discret. Appl. Math..

[7]  Colton Magnant,et al.  Tight Nordhaus–Gaddum-Type Upper Bound for Total-Rainbow Connection Number of Graphs , 2017 .

[8]  Nazanin Movarraei,et al.  On the Chromatic Edge Stability Number of Graphs , 2018, Graphs Comb..

[9]  Xuding Zhu,et al.  Total weight choosability of Mycielski graphs , 2017, J. Comb. Optim..

[10]  J. Amjadi,et al.  Nordhaus–Gaddum bounds for total Roman domination , 2018, J. Comb. Optim..

[11]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[12]  Adam Idzik,et al.  Bipartite Subgraphs of Graphs with Maximum Degree Three , 1999, Graphs Comb..

[13]  Tomislav Doslic,et al.  Computing the bipartite edge frustration of fullerene graphs , 2007, Discret. Appl. Math..

[14]  Zahra Yarahmadi The bipartite edge frustration of extension of splice and link graphs , 2010, Appl. Math. Lett..

[15]  Zdenek Dvorak,et al.  Bipartizing fullerenes , 2011, Eur. J. Comb..