Optimal Control Modeling of Human Movement

[1]  D. Jacobson,et al.  Studies of human locomotion via optimal programming , 1971 .

[2]  A. J. van den Bogert,et al.  Intrinsic muscle properties facilitate locomotor control - a computer simulation study. , 1998, Motor control.

[3]  Emanuel Todorov,et al.  Optimal Control Theory , 2006 .

[4]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[5]  Joseph Hamill,et al.  Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running , 2012, Proceedings of the Royal Society B: Biological Sciences.

[6]  M G Pandy,et al.  Application of high-performance computing to numerical simulation of human movement. , 1995, Journal of biomechanical engineering.

[7]  O Röhrle,et al.  Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling , 2016, Interface Focus.

[8]  Manoj Srinivasan,et al.  Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs , 2016, Scientific reports.

[9]  A.D. Kuo,et al.  An optimal control model for analyzing human postural balance , 1995, IEEE Transactions on Biomedical Engineering.

[10]  M G Pandy,et al.  Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. , 1995, Journal of biomechanical engineering.

[11]  Marcus G. Pandy,et al.  Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim , 2015, Annals of Biomedical Engineering.

[12]  Marko Ackermann,et al.  Optimality principles for model-based prediction of human gait. , 2010, Journal of biomechanics.

[13]  H. Hatze,et al.  Computerized optimization of sports motions: An overview of possibilities, methods and recent developments , 1983 .

[14]  E. Chao,et al.  Application of optimization principles in determining the applied moments in human leg joints during gait. , 1973, Journal of biomechanics.

[15]  Stephen J Piazza,et al.  Simulation of aperiodic bipedal sprinting. , 2013, Journal of biomechanical engineering.

[16]  T. Ghosh,et al.  Analytic determination of an optimal human motion , 1976 .

[17]  H. Hatze The complete optimization of a human motion , 1976 .

[18]  R. M. Alexander,et al.  Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture. , 2002 .

[19]  Joseph Hamill,et al.  Optimal footfall patterns for cost minimization in running. , 2015, Journal of biomechanics.

[20]  M G Pandy,et al.  A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. , 1992, Journal of biomechanical engineering.

[21]  S. Scott The computational and neural basis of voluntary motor control and planning , 2012, Trends in Cognitive Sciences.

[22]  George W. Swan,et al.  Applications of Optimal Control Theory in Biomedicine , 1984 .

[23]  Antonie J van den Bogert,et al.  Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations. , 2016, Gait & posture.

[24]  M L Audu,et al.  A dynamic optimization technique for predicting muscle forces in the swing phase of gait. , 1987, Journal of biomechanics.

[25]  Emanuel Todorov,et al.  Probabilistic Inference of Multijoint Movements, Skeletal Parameters and Marker Attachments From Diverse Motion Capture Data , 2007, IEEE Transactions on Biomedical Engineering.

[26]  Graham K. Taylor,et al.  Evolutionary biomechanics : selection, phylogeny, and constraint , 2014 .

[27]  F. Zajac,et al.  Determining Muscle's Force and Action in Multi‐Articular Movement , 1989, Exercise and sport sciences reviews.

[28]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Nobutoshi Yamazaki,et al.  Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model , 2001, Biological Cybernetics.

[30]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[31]  F. Zajac,et al.  Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. , 2001, Journal of biomechanics.

[32]  M. U. Kurse,et al.  Computational Models for Neuromuscular Function , 2009, IEEE Reviews in Biomedical Engineering.

[33]  A. V. van Soest,et al.  Effects of muscle strengthening on vertical jump height: a simulation study. , 1994, Medicine and science in sports and exercise.

[34]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[35]  Emily L. Lawrence,et al.  Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing , 2015, Front. Aging Neurosci..

[36]  S. McLean,et al.  Development and validation of a 3-D model to predict knee joint loading during dynamic movement. , 2003, Journal of biomechanical engineering.

[37]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[38]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[39]  J. Heegaard,et al.  Predictive algorithms for neuromuscular control of human locomotion. , 2001, Journal of biomechanics.

[40]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[41]  B. R. Umberger,et al.  Stance and swing phase costs in human walking , 2010, Journal of The Royal Society Interface.