High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions.

[1]  J. Coleman,et al.  Towards Solutions of Single‐Walled Carbon Nanotubes in Common Solvents , 2008 .

[2]  Chengjun Zhou,et al.  In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes , 2008 .

[3]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[4]  A. Dalton,et al.  Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers , 2007 .

[5]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[6]  J. Coleman,et al.  Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.

[7]  Han Gi Chae,et al.  Rigid-rod polymeric fibers , 2006 .

[8]  M. Maugey,et al.  Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. , 2005, Nano letters.

[9]  J. Ferraris,et al.  Continuous carbon nanotube composite fibers: properties, potential applications, and problemsElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b3/b312092a/ , 2004 .

[10]  M. Maugey,et al.  In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  R. L. Shambaugh,et al.  Enhancing the strength of polypropylene fibers with carbon nanotubes , 2004 .

[12]  W. Blau,et al.  A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres , 2004 .

[13]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[14]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[15]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[16]  R. L. Shambaugh,et al.  Polypropylene fibers reinforced with carbon nanotubes , 2002 .

[17]  R. Smalley,et al.  Synthesis, Structure, and Properties of PBO/SWNT Composites & , 2002 .

[18]  P. Poulin,et al.  Improved structure and properties of single-wall carbon nanotube spun fibers , 2002 .

[19]  R. Young,et al.  An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression , 2001 .

[20]  N. Vahdat,et al.  Estimation of permeation rate of chemicals through elastometric materials , 2001 .

[21]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[22]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[23]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[24]  Y. So Rigid-rod polymers with enhanced lateral interactions , 2000 .

[25]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[26]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[27]  B. R. Phillips,et al.  The Kevlar Story—An Advanced Materials Case Study , 1989 .

[28]  White,et al.  Oxygen intercalation homogeneity and electrical transport in superconducting Ba2YCu3O7- delta crystals. , 1988, Physical review. B, Condensed matter.