Multi-critical unitary random matrix ensembles and the general Painlevé II equation

We study unitary random matrix ensembles of the form Z-'N\detM\2«e-NTrVWdM, where a > -1/2 and V is such that the limiting mean eigenvalue density for n, N - > oc and n/N - ► 1 vanishes quadratically at the origin. In order to compute the double scaling limits of the eigenvalue correlation kernel near the origin, we use the Deift/Zhou steepest descent method applied to the Riemann-Hilbert problem for orthogonal polynomials on the real line with respect to the weight \x\2ae~NV^x\ Here the main focus is on the construction of a local parametrix near the origin with ^-functions associated with a special solution qa of the Painleve II equation q" = sq + 2q3 - a. We show that qa has no real poles for a > -1/2, by proving the solvability of the corresponding Riemann-Hilbert problem. We also show that the asymptotics of the recurrence coefficients of the orthogonal polynomials can be expressed in terms of qa in the double scaling limit.

[1]  Double Scaling Limit in Random Matrix Models and a Nonlinear Hierarchy of Differential Equations , 2002, hep-th/0209087.

[2]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[3]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[4]  D. Shih,et al.  Flux vacua and branes of the minimal superstring , 2004, hep-th/0412315.

[5]  A. Kapaev Quasi-linear Stokes phenomenon for the Hastings-McLeod solution of the second Painlevé equation , 2004, nlin/0411009.

[6]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[7]  Multicritical Microscopic Spectral Correlators of Hermitian and Complex Matrices , 1997, hep-th/9712006.

[8]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[9]  A. Kuijlaars,et al.  Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.

[10]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[11]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[12]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[13]  A. Its,et al.  Quasi-linear Stokes phenomenon for the second Painlevé transcendent , 2001, nlin/0108010.

[14]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[15]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[16]  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[17]  Bertrand Eynard,et al.  Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition , 2006, math-ph/0605064.

[18]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[19]  M. Y. Mo The Riemann-Hilbert approach to double scaling limit of random matrix eigenvalues near the , 2007, 0711.3208.

[20]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[21]  Universality for Orthogonal and Symplectic Laguerre-Type Ensembles , 2006, math-ph/0612007.

[22]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[23]  Xin Zhou The Riemann-Hilbert problem and inverse scattering , 1989 .

[24]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[25]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[26]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[27]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[28]  Universality in Random Matrix Theory for orthogonal and symplectic ensembles , 2004, math-ph/0411075.

[29]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[30]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[31]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[32]  Arno B. J. Kuijlaars,et al.  Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields , 2000 .

[33]  Maarten Vanlessen,et al.  Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight , 2002, J. Approx. Theory.

[34]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[35]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[36]  Pavel Bleher,et al.  Asymptotics of the partition function of a random matrix model , 2004 .

[37]  Tom Claeys,et al.  Birth of a Cut in Unitary Random Matrix Ensembles , 2007, 0711.2609.

[38]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[39]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[40]  S. Y. Lee,et al.  First Colonization of a Spectral Outpost in Random Matrix Theory , 2007, 0711.3625.

[41]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[42]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[43]  A. Kuijlaars,et al.  Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent , 2007, 0704.1972.