Monte Carlo Methods for Localization of Cones given Multielectrode Retinal Ganglion Cell Recordings
暂无分享,去创建一个
G D Field | E J Chichilnisky | L Paninski | K Sadeghi | J L Gauthier | M Greschner | M Agne | L. Paninski | E. Chichilnisky | K. Sadeghi | G. Field | J. Gauthier | M. Greschner | M. Agne | E.J. Chichilnisky | L Paninski | G. Field | M. Agne | K. Sadeghi
[1] D. Baylor,et al. Receptive-field microstructure of blue-yellow ganglion cells in primate retina , 1999, Nature Neuroscience.
[2] David Joyner,et al. Applied Abstract Algebra , 2004 .
[3] Timothy A. Machado,et al. Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.
[4] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[5] Jun S. Liu,et al. The Wang-Landau algorithm in general state spaces: Applications and convergence analysis , 2010 .
[6] Eero P. Simoncelli,et al. Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.
[7] Michael W Deem,et al. Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.
[8] Il Memming Park,et al. Bayesian Spike-Triggered Covariance Analysis , 2011, NIPS.
[9] E J Chichilnisky,et al. A simple white noise analysis of neuronal light responses , 2001, Network.
[10] Liam Paninski,et al. Fast inference in generalized linear models via expected log-likelihoods , 2013, Journal of Computational Neuroscience.
[11] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[12] L. Paninski. Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.
[13] A.M. Litke,et al. What does the eye tell the brain?: Development of a system for the large scale recording of retinal output activity , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).
[14] Michael J. Berry,et al. Recording spikes from a large fraction of the ganglion cells in a retinal patch , 2004, Nature Neuroscience.
[15] Eero P. Simoncelli,et al. Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.
[16] D. Landau,et al. Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.
[17] E. Chichilnisky,et al. Fidelity of the ensemble code for visual motion in primate retina. , 2005, Journal of neurophysiology.
[18] G. Casella,et al. Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.
[19] E. Chichilnisky,et al. Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.
[20] Jonathon Shlens,et al. Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.
[21] Liam Paninski,et al. Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.
[22] E J Chichilnisky,et al. Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.
[23] Stephen Warshall,et al. A Theorem on Boolean Matrices , 1962, JACM.
[24] Ruslan Salakhutdinov,et al. Learning Deep Boltzmann Machines using Adaptive MCMC , 2010, ICML.
[25] D. Freedman,et al. Asymptotics of Graphical Projection Pursuit , 1984 .
[26] R. Reid,et al. Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.
[27] Eero P. Simoncelli,et al. Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model , 2003, NIPS.