QUANTUM LOCKING OF CLASSICAL CORRELATIONS AND QUANTUM DISCORD OF CLASSICAL-QUANTUM STATES

A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.

[1]  E. Sudarshan,et al.  Completely positive maps and classical correlations , 2007, quant-ph/0703022.

[2]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[3]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[4]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[6]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[7]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[8]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[9]  Wojciech Hubert Zurek Quantum discord and Maxwell's demons , 2003 .

[10]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[11]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[12]  S. Luo Quantum discord for two-qubit systems , 2008 .

[13]  Daniel A. Lidar,et al.  Vanishing quantum discord is necessary and sufficient for completely positive maps. , 2008, Physical review letters.

[14]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[15]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[18]  A. Winter,et al.  Quantum correlation without classical correlations. , 2007, Physical review letters.

[19]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[20]  Animesh Datta,et al.  Signatures of nonclassicality in mixed-state quantum computation , 2008, 0811.4003.

[21]  Nan Li,et al.  Total versus quantum correlations in quantum states , 2007 .

[22]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[23]  Aharon Brodutch,et al.  Quantum discord, local operations, and Maxwell's demons , 2010 .

[24]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[25]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[26]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[27]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[28]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[29]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[30]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[31]  R. M. Serra,et al.  Quantum and classical thermal correlations in the XY spin-(1/2) chain , 2010, 1002.3906.

[32]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[33]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[34]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[35]  Shengjun Wu,et al.  Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality , 2009, 0905.2123.

[36]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[37]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[38]  Charles H. Bennett,et al.  Postulates for measures of genuine multipartite correlations , 2008, 0805.3060.

[39]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[40]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.