Dielectric Properties of Beans at Different Temperatures and Moisture Content in the Microwave Range

Dielectric properties of common Mexican beans (Phaseolus vulgaris L.) were determined and analyzed at microwave frequencies (800–2500 MHz). The free-space transmission technique was employed for the measurements of three varieties (“Flor de mayo,” “Bayo,” and “Negro”) with different moisture content (8.8–12.3%, w.b.) at 20, 30, 40, 50, and 60°C. The dielectric constant and loss factor of beans decreased with increasing frequency for a fixed temperature, and increased with increasing temperature at a fixed frequency. The dielectric constant increased with increasing moisture content, while the loss factor remained nearly constant. With these results, disinfestation or quality control measurements can be proposed for beans using microwaves.

[1]  D. Jayas,et al.  Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). , 2013 .

[2]  K. Hoke,et al.  DIELECTRIC PROPERTIES OF MASHED POTATOES , 2001 .

[3]  Gaetano Lamberti,et al.  Combined convective and microwave assisted drying: Experiments and modeling , 2012 .

[4]  S. Ryynänen,et al.  The electromagnetic properties of food materials: a review of the basic principles , 1995 .

[5]  K. Çarman,et al.  PH—Postharvest Technology: Physical properties of chick pea seeds , 2002 .

[6]  Taner Baysal,et al.  Dielectrical Properties of Food Materials—2: Measurement Techniques , 2004, Critical reviews in food science and nutrition.

[7]  FDA/CFSAN: Kinetics of Microbial Inactivation for Alternative Food Processing Technologies -- Microwave and Radio Frequency Processing , 2017 .

[8]  H. Mengeş,et al.  Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major) , 2003 .

[9]  S. O. Nelson,et al.  Models for the Microwave Dielectric Properties of Grain and Seed , 2011 .

[10]  Juming Tang,et al.  Temperature and Moisture Dependent Dielectric Properties of Legume Flours Associated with Dielectric Heating , 2009 .

[11]  K. P. Ray Design Aspects of Printed Monopole Antennas for Ultra-Wide Band Applications , 2008 .

[12]  Stuart O. Nelson,et al.  Nondestructive microwave characterization for determining the bulk density and moisture content of shelled corn , 1998 .

[13]  Stuart O. Nelson,et al.  Microwave dielectric method for the rapid, non-destructive determination of bulk density and moisture content of peanut hull pellets , 2013 .

[14]  Igor Minin Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment , 2010 .

[15]  A. C. Metaxas,et al.  Industrial Microwave Heating , 1988 .

[16]  Aurelio López-Malo,et al.  Dielectric properties of foods: reported data in the 21st Century and their potential applications. , 2010 .

[17]  Stuart O. Nelson,et al.  New calibration technique for microwave moisture sensors , 2001, IEEE Trans. Instrum. Meas..

[18]  A. Muqaibel,et al.  A new formulation for characterization of materials based on measured insertion transfer function , 2003 .

[19]  S. O. Nelson Correlating Dielectric Properties of Solids and Particulate Samples Through Mixture Relationships , 1990 .

[20]  N. Mohsenin Physical properties of plant and animal materials , 1970 .

[21]  Ashim K. Datta,et al.  Modeling the heating uniformity contributed by a rotating turntable in microwave ovens , 2007 .

[22]  R. Koch Ed.: S. Williams: Official Methods of Analysis. 14. Auflage, Arlington, Va., Publ. Assoc. Official Analytical Chemists, INC, 1984, 1141 S., US $ 151.50 , 1986 .

[23]  Y. Estrada-Girón,et al.  Characterization of Extruded Blends of Corn and Beans (Phaseolus Vulgaris) Cultivars: Peruano and Black-Querétaro under Different Extrusion Conditions , 2015 .

[24]  Tejinder Kaur Kataria,et al.  Compact ultra wide band antenna with filtering structure using metamaterial (MTM) and substrate integrated circuit (SIC) technologies , 2009, 2009 IEEE International Workshop on Antenna Technology.

[25]  M. Ngadi,et al.  Dielectric Properties of Pork Muscle , 2015 .

[26]  Shaojin Wang,et al.  Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating , 2010 .

[27]  Y. Liu,et al.  AN ANALYSIS OF , 2008 .

[28]  P. Kumar,et al.  Dielectric Properties of Pumpable Food Materials at 915 MHz , 2008 .

[29]  S. Rebollar,et al.  Preferencias del consumidor de frijol (Phaseolus vulgaris L.) en México: factores y características que influyen en la decisión de compra diferenciada por tipo y variedad , 2010 .

[30]  S. Trabelsi,et al.  Use of microstrip patch antennas in grain and pulverized materials permittivity measurement , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[31]  D. Hatcher,et al.  Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.) , 2010 .

[32]  Daniel Marçal de Queiroz,et al.  Dielectric Properties of Common Bean , 2002 .

[33]  P. A. Berbert,et al.  PH—Postharvest Technology: Dielectric Properties of Parchment Coffee , 2001 .

[34]  Shaojin Wang,et al.  Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments , 2011 .

[35]  K. Khalid,et al.  Variation of Microwave Dielectric Properties in the Glucose Biosensor System , 2015 .

[36]  Shaojin Wang,et al.  Frequency, moisture and temperature-dependent dielectric properties of chickpea flour , 2008 .