Non-standard Hubbard models in optical lattices: a review

Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

[1]  H. Nägerl,et al.  Observation of density-induced tunneling. , 2014, Physical review letters.

[2]  D. Delande,et al.  Dynamics of cold bosons in optical lattices: effects of higher Bloch bands , 2012, 1206.6740.

[3]  K. Nasu Extended Peierls-Hubbard Model for One-Dimensional N-Sites N-Electrons System. I. Phase Diagram by Mean Field Theory , 1983 .

[4]  R. Hulet,et al.  Phase coherence and superfluid-insulator transition in a disordered Bose-Einstein condensate , 2007, 0710.5187.

[5]  Atomic matter of nonzero-momentum Bose-Einstein condensation and orbital current order , 2006, cond-mat/0601432.

[6]  J. Zakrzewski,et al.  Fast dynamics for atoms in optical lattices. , 2012, Physical review letters.

[7]  Bose-fermi mixtures in a three-dimensional optical lattice. , 2006, Physical review letters.

[8]  Lei Wang,et al.  Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model. , 2013, Physical review letters.

[9]  A. Daley,et al.  Quantum quench in an atomic one-dimensional Ising chain. , 2013, Physical review letters.

[10]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[11]  K. Sengstock,et al.  Density-induced processes in quantum gas mixtures in optical lattices , 2012, 1207.3963.

[12]  M. Lewenstein,et al.  Dipolar molecules in optical lattices. , 2011, Physical review letters.

[13]  J. Zavala,et al.  The redshift distribution of submillimetre galaxies at different wavelengths , 2014, 1407.0721.

[14]  M. Lewenstein,et al.  Density-dependent tunneling in the extended Bose–Hubbard model , 2013, 1306.5608.

[15]  M. Fleischhauer,et al.  Multiband and nonlinear hopping corrections to the three-dimensional Bose-Fermi-Hubbard model , 2010, 1009.1776.

[16]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[17]  M. Troyer,et al.  Bosonic superfluid-insulator transition in continuous space. , 2011, Physical review letters.

[18]  C. Ospelkaus,et al.  Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. , 2006, Physical review letters.

[19]  E. Lundh,et al.  Re-entrant transition of bosons in a quasiperiodic potential , 2010, 1005.1906.

[20]  J. Struck,et al.  Spin-orbit coupling in periodically driven optical lattices , 2014, 1407.1953.

[21]  J. Cirac,et al.  Emerging bosons with three-body interactions from spin-1 atoms in optical lattices , 2010, 1007.2344.

[22]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[23]  J. Larson,et al.  Multiband bosons in optical lattices , 2008, 0811.1537.

[24]  B. Malomed,et al.  Soliton collisions in the discrete nonlinear Schrödinger equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Chung A Solution of the Hubbard Model , 2013, 1311.5300.

[26]  Niels Grønbech-Jensen,et al.  Resonance in the collision of two discrete intrinsic localized excitations , 1997 .

[27]  Gino Biondini,et al.  Methods for discrete solitons in nonlinear lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Carrasquilla,et al.  Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose-Hubbard model , 2012, 1212.2219.

[29]  M. Lewenstein,et al.  Many body population trapping in ultracold dipolar gases , 2013, 1310.7757.

[30]  Guifre Vidal,et al.  Simulation of interacting fermions with entanglement renormalization , 2009, Physical Review A.

[31]  T. Sowiński Creation on demand of higher orbital states in a vibrating optical lattice. , 2011, Physical review letters.

[32]  Complex and real unconventional Bose-Einstein condensations in high orbital bands , 2011, 1106.1121.

[33]  M. Baranov,et al.  Theoretical progress in many-body physics with ultracold dipolar gases , 2008 .

[34]  J. Hubbard,et al.  Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts , 1978 .

[35]  E. Maréchal,et al.  Resonant demagnetization of a dipolar Bose-Einstein condensate in a three-dimensional optical lattice , 2013 .

[36]  Flat bands and Wigner crystallization in the honeycomb optical lattice. , 2007, Physical review letters.

[37]  M. Salerno A new method to solve the quantum Ablowitz-Ladik system , 1992 .

[38]  T. Sowiński Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions , 2012, 1202.1932.

[39]  D. Sheehy,et al.  Imbalanced Feshbach-resonant Fermi gases , 2009, 0911.1740.

[40]  Carsten Honerkamp,et al.  Color superfluidity and "baryon" formation in ultracold fermions. , 2007, Physical review letters.

[41]  S. Suga,et al.  Color-selective Mott transition and color superfluid of three-component fermionic atoms with repulsive interaction in optical lattices , 2010 .

[42]  M. Lewenstein,et al.  Ultracold dipolar gases in optical lattices , 2011, 1103.3145.

[43]  A. Hemmerich,et al.  Interaction-induced chiral px ± ipy superfluid order of bosons in an optical lattice , 2013, 1305.1177.

[44]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[45]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[46]  B. Malomed,et al.  Two-soliton collisions in a near-integrable lattice system. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  J. Hirsch Bond-charge repulsion and hole superconductivity , 1989 .

[48]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[49]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[50]  Su,et al.  Missing bond-charge repulsion in the extended Hubbard model: Effects in polyacetylene. , 1987, Physical review letters.

[51]  On-site correlations in optical lattices: Band mixing to coupled quantum Hall puddles , 2009, 0902.4707.

[52]  P. Kevrekidis On a class of discretizations of Hamiltonian nonlinear partial differential equations , 2003 .

[53]  L. Cederbaum,et al.  Optimal time-dependent lattice models for nonequilibrium dynamics , 2010, 1006.3530.

[54]  Xiaopeng Li,et al.  Topological states in a ladder-like optical lattice containing ultracold atoms in higher orbital bands , 2012, Nature Communications.

[55]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[56]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[57]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[58]  O. Dutta,et al.  Rice–Mele model with topological solitons in an optical lattice , 2014, 1407.6533.

[59]  M. Lewenstein,et al.  Two-component Bose-Hubbard model with higher-angular-momentum states , 2011, 1104.2512.

[60]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[61]  S. Sachdev Quantum Phase Transitions , 1999 .

[62]  E. Rico,et al.  Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.

[63]  M. Lewenstein,et al.  Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.

[64]  J. Hirsch Charge-density-wave to spin-density-wave transition in the extended Hubbard model , 1984 .

[65]  I. Montvay,et al.  Quantum Fields on a Lattice: Introduction , 1994 .

[66]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[67]  B. Malomed,et al.  Moving embedded lattice solitons. , 2005, Chaos.

[68]  The transmittivity of a Bose–Einstein condensate on a lattice: interference from period doubling and the effect of disorder , 2003, cond-mat/0304104.

[69]  H. Büchler Microscopic derivation of Hubbard parameters for cold atomic gases. , 2010, Physical review letters.

[70]  S. Sarma,et al.  Topological semimetal in a fermionic optical lattice , 2010, Nature Physics.

[71]  S. Will,et al.  Time-resolved observation of coherent multi-body interactions in quantum phase revivals , 2010, Nature.

[72]  C. Regal,et al.  Tuning p-wave interactions in an ultracold Fermi gas of atoms. , 2002, Physical Review Letters.

[73]  S. Will,et al.  Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3D optical lattice. , 2008, Physical review letters.

[74]  Tetsuo Ohmi,et al.  Bose-Einstein Condensation with Internal Degrees of Freedom in Alkali Atom Gases , 1998 .

[75]  L. Cederbaum,et al.  Exact quantum dynamics of a bosonic Josephson junction. , 2009, Physical review letters.

[76]  C. Ospelkaus,et al.  Ultracold heteronuclear molecules in a 3D optical lattice. , 2006, Physical review letters.

[77]  Robert A Van Gorder,et al.  Unstaggered-staggered solitons in two-component discrete nonlinear Schrödinger lattices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Quantum bright solitons in a quasi-one-dimensional optical lattice , 2014, 1401.8222.

[79]  M. Lewenstein,et al.  Quantum phases of cold polar molecules in 2D optical lattices. , 2009, Physical review letters.

[80]  Supersolids versus phase separation in two-dimensional lattice bosons. , 2004, Physical review letters.

[81]  B A Malomed,et al.  Stability of multiple pulses in discrete systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  T. D. Kuehner,et al.  Phases of the one-dimensional Bose-Hubbard model , 1997, cond-mat/9712307.

[83]  Lluis Torner,et al.  Bright solitons from defocusing nonlinearities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[85]  M W Mitchell,et al.  Simulation of non-Abelian gauge theories with optical lattices , 2012, Nature Communications.

[86]  R T Scalettar,et al.  Supersolid phases in the one-dimensional extended soft-core bosonic Hubbard model. , 2006, Physical review letters.

[87]  R. Feynman Quantum mechanical computers , 1986 .

[88]  A. Messiah Quantum Mechanics , 1961 .

[89]  M. Mayle,et al.  Scattering of ultracold molecules in the highly resonant regime , 2013 .

[90]  S. Kokkelmans,et al.  Feshbach resonances in ultracold gases , 2014, 1401.2945.

[91]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[92]  B. Malomed,et al.  Bose–Hubbard model with occupation-dependent parameters , 2010, 1009.1313.

[93]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[94]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[95]  P. Schmelcher,et al.  Few-boson dynamics in double wells: from single-atom to correlated pair tunneling. , 2007, Physical review letters.

[96]  P. Zoller,et al.  Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. , 2006, Physical review letters.

[97]  Aleksandra Maluckov,et al.  Discrete localized modes supported by an inhomogeneous defocusing nonlinearity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Quantum fluctuations in normal metal-superconductor and superconductor-normal metal-superconductor devices , 1988 .

[99]  R. Fazio,et al.  Phase diagram of the extended Bose–Hubbard model , 2012, 1204.5964.

[100]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[101]  W. Hofstetter,et al.  Trionic phase of ultracold fermions in an optical lattice: A variational study , 2007, 0707.2378.

[102]  Xiaolong Deng,et al.  Ultracold lattice gases with periodically modulated interactions. , 2012, Physical review letters.

[103]  J. Eisert,et al.  Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices? , 2007, Physical review letters.

[104]  How to observe dipolar effects in spinor Bose-Einstein condensates. , 2010, Physical review letters.

[105]  J. Freericks,et al.  Density-wave patterns for fermionic dipolar molecules on a square optical lattice: Mean-field-theory analysis , 2011, 1102.0778.

[106]  Tilman Esslinger,et al.  Artificial graphene with tunable interactions. , 2013, Physical review letters.

[107]  P. Lee From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics , 2007, 0708.2115.

[108]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[109]  Imaging the Mott Insulator Shells by Using Atomic Clock Shifts , 2006, Science.

[110]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[111]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[112]  T. Hänsch,et al.  Ultracold heteronuclear fermi-fermi molecules. , 2008, Physical Review Letters.

[113]  N F Mott,et al.  The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals , 1949 .

[114]  Turitsyn,et al.  Stability of discrete solitons and quasicollapse to intrinsically localized modes. , 1994, Physical review letters.

[115]  M. Lewenstein,et al.  Optical Abelian Lattice Gauge Theories , 2012, 1205.0496.

[116]  Hirsch,et al.  Metallic ferromagnetism in a single-band model: Effect of band filling and Coulomb interactions. , 1996, Physical review. B, Condensed matter.

[117]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[118]  Collective excitations of a periodic Bose condensate in the Wannier representation , 2000, cond-mat/0002276.

[119]  S. Wan,et al.  Bose–Hubbard phase transition with two- and three-body interaction in a magnetic field , 2010 .

[120]  Congjun Wu,et al.  Orbital ordering and frustration of p-band Mott insulators. , 2008, Physical review letters.

[121]  J. Hirsch Inapplicability of the Hubbard model for the description of real strongly correlated electrons , 1994 .

[122]  I. Ventura Theory of Superfluidity , 1979 .

[123]  T. Mishra,et al.  "Three-body on-site interactions in ultracold bosonic atoms in optical lattices and superlattices" , 2012, 1203.1412.

[124]  A. Daley,et al.  Precision measurements on a tunable Mott insulator of ultracold atoms. , 2011, Physical review letters.

[125]  Congjun Wu UNCONVENTIONAL BOSE–EINSTEIN CONDENSATIONS BEYOND THE "NO-NODE" THEOREM , 2009, 0901.1415.

[126]  Xiao-Liang Qi,et al.  Topological Mott insulators. , 2007, Physical review letters.

[127]  M. Greiner,et al.  Orbital excitation blockade and algorithmic cooling in quantum gases , 2011, Nature.

[128]  A. Daley,et al.  Preparation and spectroscopy of a metastable Mott-insulator state with attractive interactions. , 2012, Physical review letters.

[129]  A. Hemmerich,et al.  Unconventional superfluid order in the F band of a bipartite optical square lattice. , 2010, Physical review letters.

[130]  N. Bogolyubov On the theory of superfluidity , 1947 .

[131]  Zhidong Zhang,et al.  Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice with three-body interaction , 2010 .

[132]  Masahito Ueda,et al.  Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.

[133]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[134]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[135]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[136]  G. Vidal,et al.  Simulation of fermionic lattice models in two dimensions with projected entangled-pair states: Next-nearest neighbor Hamiltonians , 2010, 1008.3937.

[137]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[138]  J. Ignacio Cirac,et al.  New frontiers in quantum information with atoms and ions , 2004 .

[139]  R. Chhajlany,et al.  Hubbard‐I approach to the Mott transition , 2011, 1110.2679.

[140]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[141]  Shi-Jian Gu,et al.  Entanglement and quantum phase transition in the extended Hubbard model. , 2004, Physical review letters.

[142]  M. Lewenstein,et al.  Can one trust quantum simulators? , 2011, Reports on progress in physics. Physical Society.

[143]  R. Chhajlany,et al.  Mean-field approaches to the Bose–Hubbard model with three-body local interaction , 2014, 1404.0704.

[144]  V. Flambaum,et al.  Calculation of the scattering length in atomic collisions using the semiclassical approximation. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[145]  P. Straten,et al.  Quantum phases in an optical lattice , 2000, cond-mat/0011108.

[146]  Dynamics and thermodynamics of the Bose-Hubbard model , 1998, cond-mat/9807033.

[147]  Interaction-dependent temperature effects in Bose-Fermi mixtures in optical lattices. , 2010, Physical review letters.

[148]  A. M. Souza,et al.  Superfluid-to-Mott insulator transition of bosons with local three-body interactions , 2012 .

[149]  Time-reversal symmetry breaking of p-orbital bosons in a one-dimensional optical lattice. , 2011, Physical review letters.

[150]  C Sias,et al.  Dynamical control of matter-wave tunneling in periodic potentials. , 2007, Physical review letters.

[151]  B. P. Das,et al.  Supersolid and solitonic phases in the one-dimensional extended Bose-Hubbard model , 2009, 0907.1258.

[152]  A. Einstein,et al.  Experimenteller Nachweis der Ampèreschen Molekularströme , 1915, Naturwissenschaften.

[154]  M. Inguscio,et al.  Feshbach spectroscopy of a K-Rb atomic mixture , 2005, cond-mat/0510630.

[155]  J. García-Ripoll,et al.  Seeing topological order in time-of-flight measurements. , 2011, Physical review letters.

[156]  C. M. Smith,et al.  Quantum simulation of correlated-hopping models with fermions in optical lattices , 2013, 1310.7959.

[157]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[158]  Bishop,et al.  Perturbation theories of a discrete, integrable nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[159]  M. Inguscio,et al.  Erratum: Feshbach spectroscopy of a K-Rb atomic mixture [Phys. Rev. A 73, 040702 (2006)] , 2006 .

[160]  B. Englert,et al.  Two Cold Atoms in a Harmonic Trap , 1998 .

[161]  K. Dieckmann,et al.  Erratum: Ultracold Heteronuclear Fermi-Fermi Molecules [Phys. Rev. Lett. 102, 020405 (2009)] , 2010 .

[162]  J. Gómez-Gardeñes,et al.  Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[163]  T. Esslinger,et al.  p-Wave interactions in low-dimensional fermionic gases. , 2005, Physical Review Letters.

[164]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[165]  P. Schmelcher,et al.  Interaction-driven interband tunneling of bosons in the triple well , 2010, 1011.4219.

[166]  M. Lewenstein,et al.  Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice , 2009, 0907.0423.

[167]  U. R. Fischer,et al.  Interaction-induced coherence among polar bosons stored in triple-well potentials , 2012, 1212.2947.

[168]  K. Sengstock,et al.  Multi-orbital and density-induced tunneling of bosons in optical lattices , 2011, 1108.3013.

[169]  M. Lewenstein,et al.  Optical lattices: Orbital dance , 2011 .

[170]  R. Micnas,et al.  Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density , 1981 .

[171]  T. Sowiński One-dimensional Bose-Hubbard model with pure three-body interactions , 2013, 1307.6852.

[172]  Dynamics of nonlinear localized states on finite discrete chains , 1997 .

[173]  N. Goldman,et al.  Light-induced gauge fields for ultracold atoms , 2013, Reports on progress in physics. Physical Society.

[174]  André Eckardt,et al.  Superfluid-insulator transition in a periodically driven optical lattice. , 2005, Physical review letters.

[175]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[176]  W. Zwerger,et al.  Mott-Hubbard transition of cold atoms in optical lattices , 2002 .

[177]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[178]  M. Lewenstein,et al.  Spin dynamics of two bosons in an optical lattice site: A role of anharmonicity and anisotropy of the trapping potential , 2013, 1303.5232.

[179]  B. Damski,et al.  Numerical studies of ground-state fidelity of the Bose-Hubbard model , 2013, 1311.1954.

[180]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[181]  Exact Results for Itinerant Ferromagnetism in Multiorbital Systems on Square and Cubic Lattices , 2013, 1310.4391.

[182]  S. Rolston,et al.  Transport of atoms in a quantum conveyor belt (10 pages) , 2005, cond-mat/0504606.

[183]  Locally critical quantum phase transitions in strongly correlated metals , 2000, Nature.

[184]  S. White,et al.  The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction , 1999, cond-mat/9906019.

[185]  R. Citro,et al.  One dimensional bosons: From condensed matter systems to ultracold gases , 2011, 1101.5337.

[186]  R. V. Mishmash,et al.  Ultracold atoms in 1D optical lattices: mean field, quantum field, computation, and soliton formation , 2008, Math. Comput. Simul..

[187]  K. Krutitsky Ultracold bosons with short-range interaction in regular optical lattices , 2015, 1501.03125.

[188]  L Santos,et al.  Spin-3 chromium Bose-Einstein condensates. , 2006, Physical review letters.

[189]  F. Mila,et al.  Three-sublattice ordering of the SU(3) Heisenberg model of three-flavor fermions on the square and cubic lattices. , 2010, Physical review letters.

[190]  A. Sharma,et al.  Nonequilibrium quantum magnetism in a dipolar lattice gas. , 2013, Physical review letters.

[191]  Vollhardt,et al.  Hubbard model with nearest-neighbor and bond-charge interaction: Exact ground-state solution in a wide range of parameters. , 1993, Physical review letters.

[192]  T. Müller,et al.  State preparation and dynamics of ultracold atoms in higher lattice orbitals. , 2007, Physical review letters.

[193]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[194]  L. Cederbaum,et al.  Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: Bose-Hubbard and full-Hamiltonian results , 2009, 0911.4661.

[195]  I. Deutsch,et al.  p-wave optical Feshbach resonanes in 171Yb , 2010, 1010.0465.

[196]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[197]  Luis Santos,et al.  Entanglement spectrum of one-dimensional extended Bose-Hubbard models , 2011 .

[198]  K. Kugel,et al.  The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .

[199]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[200]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[201]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[202]  Patrick Windpassinger,et al.  Engineering novel optical lattices , 2013, Reports on progress in physics. Physical Society.

[203]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[204]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[205]  A. Hemmerich,et al.  Orbital superfluidity in the $P$-band of a bipartite optical square lattice , 2010, 1006.0509.

[206]  Michael E. Fisher,et al.  Infinitely Many Commensurate Phases in a Simple Ising Model , 1980 .

[207]  Carl J. Williams,et al.  Effective three-body interactions of neutral bosons in optical lattices , 2008, 0812.1387.

[208]  E. Zhao,et al.  Orbital order in Mott insulators of spinless p-band fermions. , 2008, Physical review letters.

[209]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[210]  M. Lewenstein,et al.  Controlled hole doping of a Mott insulator of ultracold fermionic atoms , 2010, 1001.1918.

[211]  E. Berg,et al.  Hidden order in 1D bose insulators. , 2006, Physical review letters.

[212]  A. Eckardt,et al.  Orbital-driven melting of a bosonic Mott insulator , 2014, 1407.7421.

[213]  Loss of superfluidity by fermions in the boson Hubbard model on an optical lattice , 2008, 0812.0815.

[214]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[215]  Self-trapping of bosons and fermions in optical lattices. , 2007, Physical review letters.

[216]  W. Ketterle,et al.  Feshbach Resonances in Fermionic Lithium-6 , 2004, cond-mat/0407373.

[217]  M. Hellwig,et al.  Tuning the scattering length with an optically induced Feshbach resonance. , 2004, Physical review letters.

[218]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[219]  A. Daley,et al.  Effective three-body interactions via photon-assisted tunneling in an optical lattice , 2013, 1311.1783.

[220]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[221]  M. Dalmonte,et al.  Homogeneous and inhomogeneous magnetic phases of constrained dipolar bosons , 2010, 1009.5931.

[222]  A. Crubellier,et al.  Control of dipolar relaxation in external fields , 2010, 1002.0222.

[223]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[224]  M. Lewenstein,et al.  Tunable dipolar resonances and Einstein-de Haas effect in a {sup 87}Rb-atom condensate , 2011, 1102.1566.

[225]  Tin-Lun Ho Spinor Bose Condensates in Optical Traps , 1998 .

[226]  B. Santo,et al.  Solid State , 2012 .

[227]  Michael Köhl,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2005, Physical review letters.

[228]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[229]  Dynamical instability and loss of p-band bosons in optical lattices , 2010, 1009.5465.

[230]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[231]  Andr'e M. C. Souza,et al.  First Mott lobe of bosons with local two- and three-body interactions , 2011 .

[232]  Dmitry E. Pelinovsky,et al.  Stability of discrete solitons in nonlinear Schrödinger lattices , 2005 .

[233]  B. A. Malomed,et al.  Quantum bright solitons in the Bose-Hubbard model with site-dependent repulsive interactions , 2014 .

[234]  M. L. Wall,et al.  Dipole–dipole interactions in optical lattices do not follow an inverse cube power law , 2013, 1303.1230.

[235]  G. C. Knollman,et al.  Quantum Cell Model for Bosons , 1963 .

[236]  O. Dutta,et al.  Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice , 2014, Scientific Reports.

[237]  J. Larson,et al.  Quantum states of p-band bosons in optical lattices , 2009, 0910.2432.

[238]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[239]  A. Läuchli,et al.  Solids and supersolids of three-body interacting polar molecules on an optical lattice. , 2008, Physical review letters.

[240]  Jacob M. Taylor,et al.  Atomic three-body loss as a dynamical three-body interaction. , 2008, Physical review letters.

[241]  P. Windpassinger,et al.  Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices , 2011, Nature Physics.

[242]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[243]  Q. Niu,et al.  Interaction broadening of Wannier functions and Mott transitions in atomic BEC , 2003, cond-mat/0311012.