Towards Independent Control of Multiple Magnetic Mobile Microrobots†

In this paper, we have developed an approach for independent autonomous navigation of multiple microrobots under the influence of magnetic fields and validated it experimentally. We first developed a heuristics based planning algorithm for generating collision-free trajectories for the microrobots that are suitable to be executed by an available magnetic field. Second, we have modeled the dynamics of the microrobots to develop a controller for determining the forces that need to be generated for the navigation of the robots along the trajectories at a suitable control frequency. Next, an optimization routine is developed to determine the input currents to the electromagnetic coils that can generate the required forces for the navigation of the robots at the controller frequency. We then validated our approach by simulating an electromagnetic system that contains an array of sixty-four magnetic microcoils designed for generating local magnetic fields suitable for simultaneous independent actuation of multiple microrobots. Finally, we prototyped an mm-scale version of the system and present experimental results showing the validity of our approach.

[1]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[2]  David J. Cappelleri,et al.  A novel micro-scale magnetic tumbling microrobot , 2013 .

[3]  Paul H. Gobster,et al.  Editorial: Progress and prospects , 2012 .

[4]  Ning Xi,et al.  Assembly of nanostructure using AFM based nanomanipulation system , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[6]  Ron Pelrine,et al.  Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties , 2012, 2012 IEEE International Conference on Robotics and Automation.

[7]  Sarah Bergbreiter,et al.  Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications , 2013, Lecture Notes in Computer Science.

[8]  David J. Cappelleri,et al.  A tumbling magnetic microrobot with flexible operating modes , 2013, 2013 IEEE International Conference on Robotics and Automation.

[9]  Dong Sun,et al.  Automatic transportation of biological cells with a robot-tweezer manipulation system , 2011, Int. J. Robotics Res..

[10]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[11]  Ping Zhang,et al.  μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  David J. Cappelleri,et al.  Incorporating in-situ force sensing capabilities in a magnetic microrobot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Wenqi Hu,et al.  Micro-assembly using optically controlled bubble microrobots , 2011 .

[14]  Ning Xi,et al.  Dynamics Analysis and Motion Planning for Automated Cell Transportation With Optical Tweezers , 2013, IEEE/ASME Transactions on Mechatronics.

[15]  David J. Cappelleri,et al.  A Micro-Scale Magnetic Tumbling Microrobot , 2012 .

[16]  Tao Ju,et al.  Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer , 2011, 2011 IEEE International Conference on Mechatronics and Automation.

[17]  Satyandra K. Gupta,et al.  Algorithms for On-Line Monitoring of Micro Spheres in an Optical Tweezers-Based Assembly Cell , 2007, J. Comput. Inf. Sci. Eng..

[18]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[19]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[20]  Xi Chen,et al.  A magnetic thin film microrobot with two operating modes , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Nikolaos E. Vitoroulis,et al.  MICROCOIL DESIGN AND ANALYSIS FOR ACTUATION OF MICROSTRUCTURES AND DEVICES , 2014 .

[22]  Satyandra K. Gupta,et al.  Indirect pushing based automated micromanipulation of biological cells using optical tweezers , 2014, Int. J. Robotics Res..

[23]  Sujal Bista,et al.  Using GPUs for Realtime Prediction of Optical Forces on Microsphere Ensembles , 2012, J. Comput. Inf. Sci. Eng..

[24]  Satyandra K. Gupta,et al.  Automated Manipulation of Biological Cells Using Gripper Formations Controlled By Optical Tweezers , 2014, IEEE Transactions on Automation Science and Engineering.

[25]  David J. Cappelleri,et al.  Controlling multiple microrobots: recent progress and future challenges , 2015 .

[26]  Nam-Trung Nguyen,et al.  Modeling and optimization of planar microcoils , 2008 .

[27]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[28]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[29]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[30]  David J. Cappelleri,et al.  A Magnetic Microrobot with in situ Force Sensing Capabilities , 2014, Robotics.

[31]  David J. Cappelleri,et al.  Towards flexible, automated microassembly with caging micromanipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[32]  David J. Cappelleri,et al.  Caging for 2D and 3D micromanipulation , 2012 .

[33]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[34]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[35]  Satyandra K. Gupta,et al.  Automated Cell Transport in Optical Tweezers-Assisted Microfluidic Chambers , 2013, IEEE Transactions on Automation Science and Engineering.

[36]  Satyandra K. Gupta,et al.  Real-Time Path Planning for Coordinated Transport of Multiple Particles Using Optical Tweezers , 2012, IEEE Transactions on Automation Science and Engineering.

[37]  David J. Cappelleri,et al.  Towards Mobile Microrobot Swarms for Additive Micromanufacturing , 2014 .

[38]  Satyandra K. Gupta,et al.  Optical Tweezers: Autonomous Robots for the Manipulation of Biological Cells , 2014, IEEE Robotics & Automation Magazine.

[39]  David J. Cappelleri,et al.  Towards Functional Mobile Magnetic Microrobots , 2013, SSR@ICRA.

[40]  C. Johnson Progress and Prospects , 1991 .

[41]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[42]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.