Influence of Line Defects on the Electrical Properties of Single Crystal TiO2

One-dimensional defects are created in [001] and [110] oriented TiO2 single crystals by uniaxial pressure. Transmission electron microscopy (TEM) characterization shows them to preferably lie on {110} planes. Electrical properties studied as a function of oxygen partial pressure reveal their influence on ionic and electronic charge carriers. At high oxygen partial pressures (1 bar–10−5 bar) the conductivity due to positive charge carriers is strongly enhanced, e.g., the ionic conductivity is increased by more than two orders of magnitude, when the electrical measurement axis lies on the slip plane. In contrary, no changes are observed when the measurement axis does not lie on the slip planes. At low oxygen partial pressures (<10−15 bar), irrespective of orientation and presence of dislocation, there is no change in the n-type conductivity. The observed phenomena can be well explained within the space charge model, assuming the dislocation cores to exhibit an excess negative charge (increased titanium vacancy concentration). The present study gives a clear correlation between line defects and point defect concentrations in such an oxide for the first time.

[1]  R. Smallman,et al.  Stress-Strain Behavior of Titanium Dioxide (Rutile) Single Crystals , 1963 .

[2]  Doh-Kwon Lee,et al.  Electrical conductivity and oxygen nonstoichiometry of acceptor (Ga)-doped titania. , 2008, Physical chemistry chemical physics : PCCP.

[3]  Sheikh A. Akbar,et al.  Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide , 1992 .

[4]  J. O. Brittain,et al.  Dislocations in Rutile as Revealed by the Etch‐Pit Technique , 1962 .

[5]  M. Blanchin,et al.  Elastic Parameters, Elastic Energy, and Stress Fields of Dislocations in TiO2 Rutile Crystals , 1979 .

[6]  Manfred Martin,et al.  Using (18)O/(16)O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application. , 2008, Physical chemistry chemical physics : PCCP.

[7]  Sangtae Kim,et al.  Space Charge Effects on the Interfacial Conduction in Sr-Doped Lanthanum Gallates: A Quantitative Analysis , 2007 .

[8]  J. Yates,et al.  Anisotropy in the electrical conductivity of rutile TiO(2) in the (110) plane. , 2006, The journal of physical chemistry. B.

[9]  R. Whitworth Charged dislocations in ionic crystals , 1975 .

[10]  R. Smallman,et al.  The Fracture of Titanium Dioxide Single Crystals with Particular Reference to Non‐Stoichiometry , 1964 .

[11]  Sangtae Kim,et al.  On the origin of the blocking effect of grain-boundaries on proton transport in yttrium-doped barium zirconates , 2011 .

[12]  David J. Smith,et al.  Point, linear and extended defect structures in nonstoichiometric rutile , 1983 .

[13]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[14]  J. Maier Nanoionics: ionic charge carriers in small systems. , 2009, Physical chemistry chemical physics : PCCP.

[15]  S. Pejovnik,et al.  Interfaces in solid ionic conductors: Equilibrium and small signal picture , 1995 .

[16]  Haowei Peng First-principles study of native defects in rutile TiO2 , 2008 .

[17]  J. Janek,et al.  Ionic conductivity and activation energy for oxygen ion transport in superlattices--the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. , 2008, Physical chemistry chemical physics : PCCP.

[18]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[19]  J. Maier,et al.  Electrochemical Investigations of SrTiO3 Boundaries , 1997 .

[20]  J. Maier Space Charge Regions in Solid Two Phase Systems and Their Conduction Contribution. IV: The Behaviour of Minority Charge Carriers Part A: Concentration Profiles, Conductivity Contribution, Determination by Generalized Wagner‐Hebb‐Procedure , 1989 .

[21]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[22]  G. K. Williamson,et al.  Stacking faults and dislocations in titanium dioxide, with special reference to non-stoichiometry , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[24]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[25]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[26]  Han-Ill Yoo,et al.  Unusual oxygen re-equilibration kinetics of TiO2−δ , 2006 .

[27]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[28]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[29]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[30]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[31]  A. Ramadan,et al.  Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: a computer simulation study , 2012 .

[32]  J. Maier,et al.  Mesoscopic charge carriers chemistry in nanocrystalline SrTiO3. , 2010, Angewandte Chemie.

[33]  B. Yildiz,et al.  Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? , 2010 .

[34]  R. Smallman,et al.  Epitaxial growth of rutile thin films on titanium carbide single crystals , 1962 .

[35]  Xin Guo,et al.  Blocking Grain Boundaries in Yttria‐Doped and Undoped Ceria Ceramics of High Purity , 2003 .

[36]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[37]  J. Baumard,et al.  Thermoelectric power in reduced pure and Nb‐doped TiO2 rutile at high temperature , 1977 .

[38]  R. Smallman,et al.  The plastic deformation of titanium dioxide single crystals , 1963, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[39]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[40]  B. Uberuaga,et al.  Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  A. Kuwabara,et al.  Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia , 2003 .

[42]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[43]  Rainer Waser,et al.  Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria , 2006 .

[44]  Charles C. Sorrell,et al.  Titanium vacancies in nonstoichiometric TiO2 single crystal , 2005 .

[45]  Andreas Tschöpe,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .

[46]  M. Blanchin,et al.  Resolution of atomic steps on dislocations in rutile , 1984 .

[47]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. , 2006, The journal of physical chemistry. B.

[48]  H. Bell,et al.  Recovery of High‐Temperature Creep‐Resistant Substructure in Rutile , 1972 .

[49]  J. D. Eshelby,et al.  Charged dislocations and the strength of ionic crystals , 1958 .

[50]  N. L. Peterson,et al.  Diffusion and point defects in TiO2−x , 1985 .

[51]  W. M. Hirthe,et al.  High‐Temperature Steady‐State Creep in Rutile , 1963 .

[52]  Sangtae Kim,et al.  On the conductivity mechanism of nanocrystalline ceria , 2002 .

[53]  M. Blanchin,et al.  Transmission electron microscope observations of deformed rutile (TiO2) , 1975 .

[54]  W. Sigle,et al.  Electrical resistance of low-angle tilt grain boundaries in acceptor-doped SrTiO3 as a function of misorientation angle , 2005 .

[55]  J. Maier,et al.  Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model. , 2012, Physical chemistry chemical physics : PCCP.

[56]  D. W. Pashley The observation of dislocations in thin single crystal films of gold prepared by evaporation , 1959 .

[57]  J. Maier,et al.  Surface Conductivity Measurements on AgCl Single Crystals Using Microelectrodes , 1996 .