The microstructure evolution history and the underlying mechanism of an α/β dual phase titanium alloy during elastic-plastic deformation process

[1]  Yong-qing Zhao,et al.  Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys , 2021, Journal of Materials Science & Technology.

[2]  A. Rollett,et al.  Elastoplastic transition in a metastable β-Titanium alloy, Timetal-18 – An in-situ synchrotron X-ray diffraction study , 2021 .

[3]  Nan Wang,et al.  Effects of temperature and load on fretting fatigue induced geometrically necessary dislocation distribution in titanium alloy , 2021 .

[4]  Liucheng Zhou,et al.  Plastic deformation behavior of titanium alloy by warm laser shock peening: Microstructure evolution and mechanical properties , 2021 .

[5]  A. Rollett,et al.  Quantifying primary recrystallization from EBSD maps of partially recrystallized states of an IF steel , 2020 .

[6]  Wenguang Zhu,et al.  Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation , 2020 .

[7]  Q. Fan,et al.  Plastic deformation mode and α/β slip transfer of Ti–5Al-2.5Cr-0.5Fe-4.5Mo–1Sn–2Zr–3Zn titanium alloy at room temperature , 2020 .

[8]  Wei Chen,et al.  Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization , 2020 .

[9]  Yang Ren,et al.  In-situ investigation via high energy X-ray diffraction of stress-induced(0002)α→(110)β transformation in a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy , 2020 .

[10]  Z. Nie,et al.  Tensile deformation behavior of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range , 2020 .

[11]  Wenguang Zhu,et al.  Face centered cubic substructure and improved tensile property in a novel β titanium alloy Ti–5Al–4Zr–10Mo–3Cr , 2020 .

[12]  Lin Xiao,et al.  A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility , 2019, Materials & Design.

[13]  Hongjia Li,et al.  Understanding the deformation mechanism of individual phases of a dual-phase beta type titanium alloy using in situ diffraction method , 2018, Materials Science and Engineering: A.

[14]  Lin Xiao,et al.  Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments , 2018 .

[15]  David Foehring,et al.  Characterizing the tensile behavior of additively manufactured Ti-6Al-4V using multiscale digital image correlation , 2018 .

[16]  W. Zeng,et al.  In-situ observations of the tensile deformation and fracture behavior of a fine-grained titanium alloy sheet , 2018 .

[17]  G. Requena,et al.  An in situ investigation of the deformation mechanisms in a β-quenched Ti-5Al-5V-5Mo-3Cr alloy , 2018 .

[18]  Fu-chi Wang,et al.  Correlation between dislocation-density-based strain hardening and microstructural evolution in dual phase TC6 titanium alloy , 2018 .

[19]  W. Zeng,et al.  In situ SEM study of tensile deformation of a near-β titanium alloy , 2017 .

[20]  P. Villechaise,et al.  Influence of β anisotropy on deformation processes operating in Ti-5Al-5Mo-5V-3Cr at room temperature , 2017 .

[21]  R. Miresmaeili,et al.  Analysis of tensile deformation behavior of AM2B® advanced high-strength steel using electron back-scattered diffraction technique , 2017 .

[22]  J. Robson,et al.  How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study , 2017 .

[23]  Hongmei Zhang,et al.  Three-dimensional microstructure-based micromechanical modeling for TC6 titanium alloy , 2017 .

[24]  J. Rajagopalan,et al.  Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping , 2017 .

[25]  Q. Fan,et al.  Elastic plastic deformation of TC6 titanium alloy analyzed by in-situ synchrotron based X-ray diffraction and microstructure based finite element modeling , 2016 .

[26]  Q. Fan,et al.  Determination of the single-phase constitutive relations of α/β dual phase TC6 titanium alloy , 2016 .

[27]  F. Yuan,et al.  Combining Gradient Structure and TRIP Effect to Produce Austenite Stainless Steel with High Strength and Ductility , 2016, Heterostructured Materials.

[28]  A. Devaraj,et al.  A low-cost hierarchical nanostructured beta-titanium alloy with high strength , 2016, Nature Communications.

[29]  T. Bieler,et al.  The tensile and tensile-creep deformation behavior of Ti–8Al–1Mo–1V(wt%) , 2015 .

[30]  W. Zeng,et al.  In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy , 2013 .

[31]  W. Zeng,et al.  High-temperature deformation behavior of Ti60 titanium alloy , 2011 .

[32]  Yu Sun,et al.  Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map , 2011 .

[33]  Ricardo A. Lebensohn,et al.  Anisotropic response of high-purity α-titanium: Experimental characterization and constitutive modeling , 2010 .

[34]  P. Castany,et al.  In situ transmission electron microscopy deformation of the titanium alloy Ti–6Al–4V: Interface behaviour , 2008 .

[35]  P. Castany,et al.  Experimental study of dislocation mobility in a Ti–6Al–4V alloy , 2007 .

[36]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[37]  A. Sergueeva,et al.  The effect of annealing on tensile deformation behavior of nanostructured SPD titanium , 2003 .

[38]  S. Kalidindi,et al.  Strain hardening of titanium: role of deformation twinning , 2003 .

[39]  S. Semiatin,et al.  Deformation behavior of beta-titanium alloys , 2003 .

[40]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .