Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study

The need for parallelism in the time dimension is being driven by changes in computer architectures, where performance increases are now provided through greater concurrency, not faster clock speeds. This creates a bottleneck for sequential time marching schemes because they lack parallelism in the time dimension. Multigrid reduction in time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficiency is defined as achieving similar performance when compared to an equivalent linear problem. The benchmark nonlinear problem is the $p$-Laplacian, where p=4 corresponds to a well-known nonlinear diffusion equation and $p=2$ corresponds to the standard linear diffusion operator, our benchmark linear problem. The key difficu...

[1]  Stefan Güttel A Parallel Overlapping Time-Domain Decomposition Method for ODEs , 2013, Domain Decomposition Methods in Science and Engineering XX.

[2]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[3]  Michael L. Minion,et al.  Parareal and Spectral Deferred Corrections , 2008 .

[4]  A. Katz,et al.  Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application , 2014 .

[5]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[6]  Graham Horton,et al.  An Algorithm with Polylog Parallel Complexity for Solving Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[7]  Yvon Maday,et al.  Parallelization in time through tensor-product space–time solvers , 2008 .

[8]  G. Fairweather,et al.  Numerical Methods for Two – Point Boundary Value Problems , 2008 .

[9]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[10]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[11]  Alexander Ostermann,et al.  Multi-grid dynamic iteration for parabolic equations , 1987 .

[12]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[13]  Robert D. Falgout,et al.  A parallel multigrid reduction in time method for power systems , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[14]  Bernard Philippe,et al.  A parallel shooting technique for solving dissipative ODE's , 1993, Computing.

[15]  P. Lindqvist Notes on the p-Laplace equation , 2006 .

[16]  Jürg Nievergelt,et al.  Parallel methods for integrating ordinary differential equations , 1964, CACM.

[17]  Gustaf Söderlind,et al.  Adaptive Time-Stepping and Computational Stability , 2006 .

[18]  Graham Horton,et al.  Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods , 2005, Computing.

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  Matthias Bolten,et al.  Interweaving PFASST and Parallel Multigrid , 2015, SIAM J. Sci. Comput..

[21]  W. Miranker,et al.  Parallel methods for the numerical integration of ordinary differential equations , 1967 .

[22]  Ralf Knirsch,et al.  A time-parallel multigrid-extrapolation method for parabolic partial differential equations , 1992, Parallel Comput..

[23]  Tobias Weinzierl,et al.  A Geometric Space-Time Multigrid Algorithm for the Heat Equation , 2012 .

[24]  Mohamed Kamel Riahi,et al.  TOWARDS A FULLY SCALABLE BALANCED PARAREAL METHOD: APPLICATION TO NEUTRONICS , 2015 .

[25]  Abderrahim Elmoataz,et al.  On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing , 2015, SIAM J. Imaging Sci..

[26]  Graham Horton,et al.  The time‐parallel multigrid method , 1992 .

[27]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[28]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[29]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2014 .

[30]  Thomas A. Manteuffel,et al.  Parallel-In-Time For Moving Meshes , 2016 .

[31]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[32]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[33]  Stephanie Friedhoff Design and analysis of multigrid methods for parabolic problems , 2014 .

[34]  Peter Deuflhard,et al.  Recent progress in extrapolation methods for ordinary differential equations , 1985 .

[35]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[36]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[37]  Julie Rowlett,et al.  Mathematical Models for Erosion and the Optimal Transportation of Sediment , 2013, 2012.07736.

[38]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[39]  Stefan Vandewalle,et al.  Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations , 1992, SIAM J. Sci. Comput..

[40]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems , 1982 .

[41]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[42]  Stefan Vandewalle,et al.  Space-time Concurrent Multigrid Waveform Relaxation , 1994 .

[43]  Thomas A. Manteuffel,et al.  Least-Squares Finite Element Methods and Algebraic Multigrid Solvers for Linear Hyperbolic PDEs , 2004, SIAM J. Sci. Comput..

[44]  David J. Buttler,et al.  Encyclopedia of Data Warehousing and Mining Second Edition , 2008 .

[45]  M. N. Vrahatisa,et al.  From linear to nonlinear iterative methods , 2003 .

[46]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[47]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..