Non-linear Based Fuzzy Random Regression for Independent Variable Selection

This paper demonstrates a fuzzy random regression approach using genetic algorithm (FRR-GA) to select independent variable for regression model. The FRR-GA approach enables us to indicate the best coefficient values among regressor that indicate the best independent variable, which is important to build regression model. Additionally, the fuzzy random regression approach is employed to treat dual uncertainties due to the realization of such data in real application. This paper presents an algorithm reflecting the non-linear strategy in the fuzzy random regression model. A numerical example illustrates the proposed solution procedure whereby the result suggested several feasible solutions to the user.

[1]  Nureize Arbaiy Fuzzy regression for weight information extraction in fuzzy environment , 2014 .

[2]  Didier Dubois,et al.  Possibility Theory and Its Applications: Where Do We Stand? , 2015, Handbook of Computational Intelligence.

[3]  Xiaosheng Wang,et al.  Variance of uncertain random variables , 2014 .

[4]  Nureize Arbaiy,et al.  Fuzzy Random Regression-Based Modeling in Uncertain Environment , 2016 .

[5]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[6]  Okyay Kaynak,et al.  Fusion of Computational Intelligence Techniques and Their Practical Applications , 2015, Comput. Intell. Neurosci..

[7]  Ana Colubi,et al.  Estimation of a simple linear regression model for fuzzy random variables , 2009, Fuzzy Sets Syst..

[8]  Lisa Scholten,et al.  Tackling uncertainty in multi-criteria decision analysis - An application to water supply infrastructure planning , 2015, Eur. J. Oper. Res..

[9]  J. Tenenbaum,et al.  Predicting the future as Bayesian inference: people combine prior knowledge with observations when estimating duration and extent. , 2011, Journal of experimental psychology. General.

[10]  Witold Pedrycz,et al.  Building Confidence-Interval-Based Fuzzy Random Regression Models , 2009, IEEE Transactions on Fuzzy Systems.

[11]  Ian N. Durbach,et al.  Dealing with Uncertainties in MCDA , 2016 .

[12]  Stjepan Oreski,et al.  Genetic algorithm-based heuristic for feature selection in credit risk assessment , 2014, Expert Syst. Appl..

[13]  Nureize Arbaiy,et al.  Multi-level multi-objective decision problem through fuzzy random regression based objective function , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[14]  Bahaman Abu Samah,et al.  Paddy industry and paddy farmers well-being: a success recipe for agriculture industry in Malaysia , 2013 .

[15]  J. Watada,et al.  Building fuzzy random objective function for interval fuzzy goal programming , 2010, 2010 IEEE International Conference on Industrial Engineering and Engineering Management.

[16]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[17]  Ahmet Arslan,et al.  A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm , 2013, Inf. Sci..

[18]  Wei-Yin Chen,et al.  Stochasticity and noise-induced transition of genetic toggle switch , 2014 .

[19]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[20]  A. Sykes An Introduction to Regression Analysis , 1993 .

[21]  Wolfgang Näther Regression with fuzzy random data , 2006, Comput. Stat. Data Anal..