Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans

[1]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[2]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[3]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[4]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[5]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[6]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[7]  V. Ambros,et al.  Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. , 2006, RNA.

[8]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[9]  G. Ruvkun,et al.  Functional Proteomics Reveals the Biochemical Niche of C. elegans DCR-1 in Multiple Small-RNA-Mediated Pathways , 2006, Cell.

[10]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[11]  H. Nakayashiki RNA silencing in fungi: Mechanisms and applications , 2005, FEBS letters.

[12]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[13]  Shivakundan Singh Tej,et al.  Elucidation of the Small RNA Component of the Transcriptome , 2005, Science.

[14]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[15]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[16]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[17]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[18]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[19]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.

[20]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[21]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[22]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[23]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[24]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[25]  Ronald H. A. Plasterk,et al.  Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi , 2003, Nature.

[26]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[27]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[28]  E. H. Feinberg,et al.  Transport of dsRNA into Cells by the Transmembrane Protein SID-1 , 2003, Science.

[29]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[30]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[31]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[32]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[33]  C. Kao,et al.  Requirements for De Novo Initiation of RNA Synthesis by Recombinant Flaviviral RNA-Dependent RNA Polymerases , 2002, Journal of Virology.

[34]  D. Bamford,et al.  Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. , 2002, Molecular cell.

[35]  M. A. Rector,et al.  References and Notes Materials and Methods Som Text Fig. S1 Table S1 References a Microrna in a Multiple- Turnover Rnai Enzyme Complex , 2022 .

[36]  K. H. Wolfe,et al.  Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. , 2002, Genome research.

[37]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[38]  Titia Sijen,et al.  RNA Helicase MUT-14-Dependent Gene Silencing Triggered in C. elegans by Short Antisense RNAs , 2002, Science.

[39]  Titia Sijen,et al.  On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing , 2001, Cell.

[40]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[41]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[42]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[43]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[44]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[45]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[46]  R. Sousa,et al.  T7 RNA polymerase. , 2001, Progress in nucleic acid research and molecular biology.

[47]  Anne M. Smardon,et al.  Erratum: EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans (Current Biology (2000) 10 (169-178)) , 2000 .

[48]  J. Spoerke,et al.  EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans , 2000, Current Biology.

[49]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[50]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[51]  J. Spoerke,et al.  EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans , 2000, Current Biology.

[52]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[53]  D. Bartel,et al.  PCR product with strands of unequal length. , 1995, Nucleic acids research.

[54]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[55]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[56]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[57]  C. Martin,et al.  T7 RNA polymerase does not interact with the 5'-phosphate of the initiating nucleotide. , 1989, Biochemistry.

[58]  B. Kemper Inactivation of parathyroid hormone mRNA by treatment with periodate and aniline , 1976, Nature.

[59]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[60]  M. Hattori,et al.  Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[61]  W. James Kent,et al.  The Intronerator: exploring introns and alternative splicing in Caenorhabditis elegans , 2000, Nucleic Acids Res..