The Lorenz model in discrete time
暂无分享,去创建一个
[1] Michael Schanz,et al. Critical homoclinic orbits lead to snap-back repellers , 2011 .
[2] Laura Gardini,et al. Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.
[3] F. R. Marotto. On redefining a snap-back repeller , 2005 .
[4] E Mosekilde,et al. Torus breakdown in noninvertible maps. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Ioannis G. Kevrekidis,et al. A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle , 2003, math/0301301.
[6] Christian Mira,et al. On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .
[7] Christian Mira,et al. Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .
[8] Laura Gardini,et al. Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .
[9] Edward N. Lorenz,et al. Computational chaos-a prelude to computational instability , 1989 .
[10] C Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[11] J. Milnor. On the concept of attractor , 1985 .
[12] R. R. Whitehead,et al. A chaotic mapping that displays its own homoclinic structure , 1984 .
[13] D. Aronson,et al. Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .
[14] F. R. Marotto. Snap-back repellers imply chaos in Rn , 1978 .