Quantum Estimation Methods for Quantum Illumination.

Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable choice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schrödinger's cat states may be used for quantum illumination.

[1]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[2]  Manuel E. Lladser,et al.  Quantum Computation , 2018, Scholarpedia.

[3]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[4]  Zheshen Zhang,et al.  Entanglement-enhanced sensing in a lossy and noisy environment. , 2014, Physical review letters.

[5]  Seth Lloyd,et al.  Quantum illumination versus coherent-state target detection , 2009, 0902.0986.

[6]  G Brida,et al.  Experimental realization of quantum illumination. , 2013, Physical review letters.

[7]  E. Solano,et al.  Parity-dependent State Engineering and Tomography in the ultrastrong coupling regime , 2014, Scientific Reports.

[8]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[9]  Saikat Guha,et al.  Gaussian-state quantum-illumination receivers for target detection , 2009, 0911.0950.

[10]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[11]  Yvonne Y Gao,et al.  A Schrödinger cat living in two boxes , 2016, Science.

[12]  Saikat Guha,et al.  Microwave quantum illumination. , 2015, Physical review letters.

[13]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[14]  E. Solano,et al.  Quantum teleportation of propagating quantum microwaves , 2015, 1506.06701.

[15]  Samuel L. Braunstein,et al.  Asymmetric quantum hypothesis testing with Gaussian states , 2014, 1407.0884.

[16]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[17]  E. Bagan,et al.  Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states , 2007, 0708.2343.

[18]  Seth Lloyd,et al.  Gaussian hypothesis testing and quantum illumination , 2016, Physical review letters.

[19]  Zheshen Zhang,et al.  Entanglement's benefit survives an entanglement-breaking channel. , 2013, Physical review letters.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[22]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[23]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[24]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[25]  Massimiliano F. Sacchi,et al.  Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[27]  Seth Lloyd,et al.  Computable bounds for the discrimination of Gaussian states , 2008, 0806.1625.

[28]  M. Hayashi Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation , 2002, quant-ph/0202003.